(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)
MINUS(x, s(y)) → PRED(minus(x, y))
MINUS(x, s(y)) → MINUS(x, y)
MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
MOD(s(x), s(y)) → LE(y, x)
IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))
IF_MOD(true, s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(x, s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(x, s(y)) → MINUS(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x1, x2)
s(x1)  =  s(x1)
le(x1, x2)  =  x2
0  =  0
true  =  true
false  =  false
pred(x1)  =  x1
minus(x1, x2)  =  minus(x1)
mod(x1, x2)  =  mod(x1)
if_mod(x1, x2, x3)  =  if_mod(x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > minus1 > [MINUS2, 0, true, false]
s1 > mod1 > ifmod1 > [MINUS2, 0, true, false]

Status:
MINUS2: [2,1]
s1: [1]
0: []
true: []
false: []
minus1: [1]
mod1: [1]
ifmod1: [1]


The following usable rules [FROCOS05] were oriented:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LE(x1, x2)  =  LE(x1)
s(x1)  =  s(x1)
le(x1, x2)  =  x2
0  =  0
true  =  true
false  =  false
pred(x1)  =  x1
minus(x1, x2)  =  minus(x1)
mod(x1, x2)  =  mod(x1, x2)
if_mod(x1, x2, x3)  =  if_mod(x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[s1, minus1, mod2, ifmod2] > LE1 > true
[s1, minus1, mod2, ifmod2] > 0 > false > true

Status:
LE1: [1]
s1: [1]
0: []
true: []
false: []
minus1: [1]
mod2: [2,1]
ifmod2: [2,1]


The following usable rules [FROCOS05] were oriented:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MOD(x1, x2)  =  MOD(x1, x2)
s(x1)  =  s(x1)
IF_MOD(x1, x2, x3)  =  IF_MOD(x2, x3)
le(x1, x2)  =  le(x2)
true  =  true
minus(x1, x2)  =  minus(x1)
0  =  0
false  =  false
pred(x1)  =  x1
mod(x1, x2)  =  mod(x1)
if_mod(x1, x2, x3)  =  if_mod(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
s1 > [MOD2, IFMOD2] > minus1 > 0
s1 > [le1, mod1] > true > minus1 > 0
s1 > [le1, mod1] > false > 0
s1 > [le1, mod1] > ifmod2 > minus1 > 0

Status:
MOD2: [2,1]
s1: [1]
IFMOD2: [2,1]
le1: [1]
true: []
minus1: [1]
0: []
false: []
mod1: [1]
ifmod2: [2,1]


The following usable rules [FROCOS05] were oriented:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(20) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(21) TRUE