(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
MOD(s(x), s(y)) → LE(y, x)
IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))
IF_MOD(true, s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MINUS(s(x), s(y)) → MINUS(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x2)
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
s1 > MINUS1

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LE(x1, x2)  =  LE(x2)
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
s1 > LE1

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MOD(x1, x2)  =  x1
s(x1)  =  s(x1)
IF_MOD(x1, x2, x3)  =  x2
le(x1, x2)  =  x1
true  =  true
minus(x1, x2)  =  minus(x1)
0  =  0
false  =  false

Lexicographic Path Order [LPO].
Precedence:
s1 > minus1
s1 > false
0 > true
0 > false

The following usable rules [FROCOS05] were oriented:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(20) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(21) TRUE