0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
↳18 QDPOrderProof (⇔)
↳19 QDP
↳20 DependencyGraphProof (⇔)
↳21 TRUE
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))
LE(s(x), s(y)) → LE(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
MOD(s(x), s(y)) → LE(y, x)
IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))
IF_MOD(true, s(x), s(y)) → MINUS(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))
MINUS(s(x), s(y)) → MINUS(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s(x), s(y)) → MINUS(x, y)
trivial
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))
LE(s(x), s(y)) → LE(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s(x), s(y)) → LE(x, y)
trivial
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))
MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IF_MOD(true, s(x), s(y)) → MOD(minus(x, y), s(y))
trivial
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
MOD(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, 0)
minus(s(x0), s(x1))
mod(0, x0)
mod(s(x0), 0)
mod(s(x0), s(x1))
if_mod(true, s(x0), s(x1))
if_mod(false, s(x0), s(x1))