(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, s(x), s(y)) → s(x)
if(false, s(x), s(y)) → s(y)
g(x, c(y)) → c(g(x, y))
g(x, c(y)) → g(x, if(f(x), c(g(s(x), y)), c(y)))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x)) → F(x)
G(x, c(y)) → G(x, y)
G(x, c(y)) → G(x, if(f(x), c(g(s(x), y)), c(y)))
G(x, c(y)) → IF(f(x), c(g(s(x), y)), c(y))
G(x, c(y)) → F(x)
G(x, c(y)) → G(s(x), y)
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, s(x), s(y)) → s(x)
if(false, s(x), s(y)) → s(y)
g(x, c(y)) → c(g(x, y))
g(x, c(y)) → g(x, if(f(x), c(g(s(x), y)), c(y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(s(x)) → F(x)
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, s(x), s(y)) → s(x)
if(false, s(x), s(y)) → s(y)
g(x, c(y)) → c(g(x, y))
g(x, c(y)) → g(x, if(f(x), c(g(s(x), y)), c(y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(s(x)) → F(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(
x1) =
x1
s(
x1) =
s(
x1)
Lexicographic path order with status [LPO].
Precedence:
trivial
Status:
s1: [1]
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, s(x), s(y)) → s(x)
if(false, s(x), s(y)) → s(y)
g(x, c(y)) → c(g(x, y))
g(x, c(y)) → g(x, if(f(x), c(g(s(x), y)), c(y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(x, c(y)) → G(s(x), y)
G(x, c(y)) → G(x, y)
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, s(x), s(y)) → s(x)
if(false, s(x), s(y)) → s(y)
g(x, c(y)) → c(g(x, y))
g(x, c(y)) → g(x, if(f(x), c(g(s(x), y)), c(y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
G(x, c(y)) → G(s(x), y)
G(x, c(y)) → G(x, y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(
x1,
x2) =
G(
x1,
x2)
c(
x1) =
c(
x1)
s(
x1) =
x1
Lexicographic path order with status [LPO].
Precedence:
trivial
Status:
G2: [1,2]
c1: [1]
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, s(x), s(y)) → s(x)
if(false, s(x), s(y)) → s(y)
g(x, c(y)) → c(g(x, y))
g(x, c(y)) → g(x, if(f(x), c(g(s(x), y)), c(y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) TRUE