(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(x))) → lastbit(x)
conv(0) → cons(nil, 0)
conv(s(x)) → cons(conv(half(s(x))), lastbit(s(x)))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(x))) → lastbit(x)
conv(0) → cons(nil, 0)
conv(s(x)) → cons(conv(half(s(x))), lastbit(s(x)))

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))
lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)
LASTBIT(s(s(x))) → LASTBIT(x)
CONV(s(x)) → CONV(half(s(x)))
CONV(s(x)) → HALF(s(x))
CONV(s(x)) → LASTBIT(s(x))

The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(x))) → lastbit(x)
conv(0) → cons(nil, 0)
conv(s(x)) → cons(conv(half(s(x))), lastbit(s(x)))

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))
lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LASTBIT(s(s(x))) → LASTBIT(x)

The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(x))) → lastbit(x)
conv(0) → cons(nil, 0)
conv(s(x)) → cons(conv(half(s(x))), lastbit(s(x)))

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))
lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LASTBIT(s(s(x))) → LASTBIT(x)

R is empty.
The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))
lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

half(0)
half(s(0))
half(s(s(x0)))
lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LASTBIT(s(s(x))) → LASTBIT(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LASTBIT(s(s(x))) → LASTBIT(x)
    The graph contains the following edges 1 > 1

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(x))) → lastbit(x)
conv(0) → cons(nil, 0)
conv(s(x)) → cons(conv(half(s(x))), lastbit(s(x)))

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))
lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

R is empty.
The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))
lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(17) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

half(0)
half(s(0))
half(s(s(x0)))
lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • HALF(s(s(x))) → HALF(x)
    The graph contains the following edges 1 > 1

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONV(s(x)) → CONV(half(s(x)))

The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(x))) → lastbit(x)
conv(0) → cons(nil, 0)
conv(s(x)) → cons(conv(half(s(x))), lastbit(s(x)))

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))
lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(22) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONV(s(x)) → CONV(half(s(x)))

The TRS R consists of the following rules:

half(s(0)) → 0
half(s(s(x))) → s(half(x))
half(0) → 0

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))
lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(24) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

lastbit(0)
lastbit(s(0))
lastbit(s(s(x0)))
conv(0)
conv(s(x0))

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONV(s(x)) → CONV(half(s(x)))

The TRS R consists of the following rules:

half(s(0)) → 0
half(s(s(x))) → s(half(x))
half(0) → 0

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

(26) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

half(s(0)) → 0
half(s(s(x))) → s(half(x))

Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(CONV(x1)) = x1   
POL(half(x1)) = x1   
POL(s(x1)) = 1 + x1   

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONV(s(x)) → CONV(half(s(x)))

The TRS R consists of the following rules:

half(0) → 0

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.

(28) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(29) TRUE