(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

p(s(x)) → x
fac(0) → s(0)
fac(s(x)) → times(s(x), fac(p(s(x))))

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

p(s(x)) → x
fac(0) → s(0)
fac(s(x)) → times(s(x), fac(p(s(x))))

The set Q consists of the following terms:

p(s(x0))
fac(0)
fac(s(x0))

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x)) → FAC(p(s(x)))
FAC(s(x)) → P(s(x))

The TRS R consists of the following rules:

p(s(x)) → x
fac(0) → s(0)
fac(s(x)) → times(s(x), fac(p(s(x))))

The set Q consists of the following terms:

p(s(x0))
fac(0)
fac(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x)) → FAC(p(s(x)))

The TRS R consists of the following rules:

p(s(x)) → x
fac(0) → s(0)
fac(s(x)) → times(s(x), fac(p(s(x))))

The set Q consists of the following terms:

p(s(x0))
fac(0)
fac(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x)) → FAC(p(s(x)))

The TRS R consists of the following rules:

p(s(x)) → x

The set Q consists of the following terms:

p(s(x0))
fac(0)
fac(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(9) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

fac(0)
fac(s(x0))

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x)) → FAC(p(s(x)))

The TRS R consists of the following rules:

p(s(x)) → x

The set Q consists of the following terms:

p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(11) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

p(s(x)) → x

Used ordering: Polynomial interpretation [POLO]:

POL(FAC(x1)) = x1   
POL(p(x1)) = x1   
POL(s(x1)) = 1 + x1   

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FAC(s(x)) → FAC(p(s(x)))

R is empty.
The set Q consists of the following terms:

p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(14) TRUE