(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) → plus(minus(y, s(s(z))), minus(x, s(0)))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) → MINUS(x, y)
PLUS(s(x), y) → PLUS(x, y)
PLUS(minus(x, s(0)), minus(y, s(s(z)))) → PLUS(minus(y, s(s(z))), minus(x, s(0)))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) → plus(minus(y, s(s(z))), minus(x, s(0)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 1 less node.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS(minus(x, s(0)), minus(y, s(s(z)))) → PLUS(minus(y, s(s(z))), minus(x, s(0)))
PLUS(s(x), y) → PLUS(x, y)
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) → plus(minus(y, s(s(z))), minus(x, s(0)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) → plus(minus(y, s(s(z))), minus(x, s(0)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) → plus(minus(y, s(s(z))), minus(x, s(0)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.