(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

g(s(x)) → f(x)
f(0) → s(0)
f(s(x)) → s(s(g(x)))
g(0) → 0

Q is empty.

(1) Overlay + Local Confluence (EQUIVALENT transformation)

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

g(s(x)) → f(x)
f(0) → s(0)
f(s(x)) → s(s(g(x)))
g(0) → 0

The set Q consists of the following terms:

g(s(x0))
f(0)
f(s(x0))
g(0)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(s(x)) → F(x)
F(s(x)) → G(x)

The TRS R consists of the following rules:

g(s(x)) → f(x)
f(0) → s(0)
f(s(x)) → s(s(g(x)))
g(0) → 0

The set Q consists of the following terms:

g(s(x0))
f(0)
f(s(x0))
g(0)

We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(s(x)) → F(x)
F(s(x)) → G(x)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
s1 > [G1, F1]


The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

g(s(x)) → f(x)
f(0) → s(0)
f(s(x)) → s(s(g(x)))
g(0) → 0

The set Q consists of the following terms:

g(s(x0))
f(0)
f(s(x0))
g(0)

We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE