(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(x, plus(y, s(z))) → PLUS(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
TIMES(x, plus(y, s(z))) → TIMES(x, plus(y, times(s(z), 0)))
TIMES(x, plus(y, s(z))) → PLUS(y, times(s(z), 0))
TIMES(x, plus(y, s(z))) → TIMES(s(z), 0)
TIMES(x, plus(y, s(z))) → TIMES(x, s(z))
TIMES(x, s(y)) → PLUS(times(x, y), x)
TIMES(x, s(y)) → TIMES(x, y)
PLUS(x, s(y)) → PLUS(x, y)

The TRS R consists of the following rules:

times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(x, s(y)) → PLUS(x, y)

The TRS R consists of the following rules:

times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(x, s(y)) → PLUS(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PLUS(x, s(y)) → PLUS(x, y)
    The graph contains the following edges 1 >= 1, 2 > 2

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(x, plus(y, s(z))) → TIMES(x, s(z))
TIMES(x, s(y)) → TIMES(x, y)
TIMES(x, plus(y, s(z))) → TIMES(x, plus(y, times(s(z), 0)))

The TRS R consists of the following rules:

times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(x, plus(y, s(z))) → TIMES(x, s(z))
TIMES(x, s(y)) → TIMES(x, y)
TIMES(x, plus(y, s(z))) → TIMES(x, plus(y, times(s(z), 0)))

The TRS R consists of the following rules:

times(x, 0) → 0
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

TIMES(x, plus(y, s(z))) → TIMES(x, s(z))
TIMES(x, s(y)) → TIMES(x, y)

Strictly oriented rules of the TRS R:

plus(x, 0) → x

Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(TIMES(x1, x2)) = x1 + x2   
POL(plus(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = 1 + x1   
POL(times(x1, x2)) = x1 + x2   

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(x, plus(y, s(z))) → TIMES(x, plus(y, times(s(z), 0)))

The TRS R consists of the following rules:

times(x, 0) → 0
plus(x, s(y)) → s(plus(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

plus(x, s(y)) → s(plus(x, y))

Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(TIMES(x1, x2)) = x1 + 2·x2   
POL(plus(x1, x2)) = 2·x1 + 2·x2   
POL(s(x1)) = 2 + x1   
POL(times(x1, x2)) = x1 + x2   

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(x, plus(y, s(z))) → TIMES(x, plus(y, times(s(z), 0)))

The TRS R consists of the following rules:

times(x, 0) → 0

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE