0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 PisEmptyProof (⇔)
↳9 TRUE
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 QDPOrderProof (⇔)
↳16 QDP
↳17 PisEmptyProof (⇔)
↳18 TRUE
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
TIMES(x, plus(y, s(z))) → PLUS(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
TIMES(x, plus(y, s(z))) → TIMES(x, plus(y, times(s(z), 0)))
TIMES(x, plus(y, s(z))) → PLUS(y, times(s(z), 0))
TIMES(x, plus(y, s(z))) → TIMES(s(z), 0)
TIMES(x, plus(y, s(z))) → TIMES(x, s(z))
TIMES(x, s(y)) → PLUS(times(x, y), x)
TIMES(x, s(y)) → TIMES(x, y)
PLUS(x, s(y)) → PLUS(x, y)
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
PLUS(x, s(y)) → PLUS(x, y)
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(x, s(y)) → PLUS(x, y)
s1 > PLUS1
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
TIMES(x, plus(y, s(z))) → TIMES(x, s(z))
TIMES(x, s(y)) → TIMES(x, y)
TIMES(x, plus(y, s(z))) → TIMES(x, plus(y, times(s(z), 0)))
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES(x, plus(y, s(z))) → TIMES(x, s(z))
TIMES2 > 0
plus2 > 0
plus(x, s(y)) → s(plus(x, y))
plus(x, 0) → x
times(x, 0) → 0
TIMES(x, s(y)) → TIMES(x, y)
TIMES(x, plus(y, s(z))) → TIMES(x, plus(y, times(s(z), 0)))
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES(x, s(y)) → TIMES(x, y)
plus2 > s1 > TIMES1 > 0
plus(x, s(y)) → s(plus(x, y))
plus(x, 0) → x
times(x, 0) → 0
TIMES(x, plus(y, s(z))) → TIMES(x, plus(y, times(s(z), 0)))
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES(x, plus(y, s(z))) → TIMES(x, plus(y, times(s(z), 0)))
plus2 > TIMES1 > 0
plus2 > s > 0
plus(x, s(y)) → s(plus(x, y))
plus(x, 0) → x
times(x, 0) → 0
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))