0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
MINUS(x, s(y)) → PRED(minus(x, y))
MINUS(x, s(y)) → MINUS(x, y)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) → MINUS(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
MINUS(x, s(y)) → MINUS(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(x, s(y)) → MINUS(x, y)
trivial
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
QUOT1 > s1
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
pred(s(x)) → x
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
pred(s(x0))
minus(x0, 0)
minus(x0, s(x1))
quot(0, s(x0))
quot(s(x0), s(x1))