0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 QDPOrderProof (⇔)
↳11 QDP
↳12 PisEmptyProof (⇔)
↳13 TRUE
↳14 QDP
↳15 QDPOrderProof (⇔)
↳16 QDP
↳17 PisEmptyProof (⇔)
↳18 TRUE
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
times(x0, 0)
times(x0, s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
TIMES(x, s(y)) → PLUS(times(x, y), x)
TIMES(x, s(y)) → TIMES(x, y)
PLUS(x, s(y)) → PLUS(x, y)
PLUS(s(x), y) → PLUS(x, y)
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
times(x0, 0)
times(x0, s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
PLUS(s(x), y) → PLUS(x, y)
PLUS(x, s(y)) → PLUS(x, y)
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
times(x0, 0)
times(x0, s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(s(x), y) → PLUS(x, y)
times2 > plus2 > s1
PLUS1: [1]
s1: [1]
times2: [2,1]
0: []
plus2: [1,2]
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
PLUS(x, s(y)) → PLUS(x, y)
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
times(x0, 0)
times(x0, s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(x, s(y)) → PLUS(x, y)
PLUS2 > s1
times2 > 0 > s1
times2 > plus2 > s1
PLUS2: [1,2]
s1: [1]
times2: [2,1]
0: []
plus2: [2,1]
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
times(x0, 0)
times(x0, s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
TIMES(x, s(y)) → TIMES(x, y)
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
times(x0, 0)
times(x0, s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES(x, s(y)) → TIMES(x, y)
TIMES2 > s1
times2 > 0 > s1
times2 > plus2 > s1
TIMES2: [1,2]
s1: [1]
times2: [2,1]
0: []
plus2: [2,1]
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(0, x) → x
plus(x, s(y)) → s(plus(x, y))
plus(s(x), y) → s(plus(x, y))
times(x0, 0)
times(x0, s(x1))
plus(x0, 0)
plus(0, x0)
plus(x0, s(x1))
plus(s(x0), x1)