(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(f(a)) → a__f(g(f(a)))
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(g(X)) → g(X)
a__f(X) → f(X)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(f(a)) → a__f(g(f(a)))
a__f(z0) → f(z0)
mark(f(z0)) → a__f(mark(z0))
mark(a) → a
mark(g(z0)) → g(z0)
Tuples:
A__F(f(a)) → c(A__F(g(f(a))))
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
S tuples:
A__F(f(a)) → c(A__F(g(f(a))))
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
K tuples:none
Defined Rule Symbols:
a__f, mark
Defined Pair Symbols:
A__F, MARK
Compound Symbols:
c, c2
(3) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 2 dangling nodes:
A__F(f(a)) → c(A__F(g(f(a))))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(f(a)) → a__f(g(f(a)))
a__f(z0) → f(z0)
mark(f(z0)) → a__f(mark(z0))
mark(a) → a
mark(g(z0)) → g(z0)
Tuples:
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
S tuples:
MARK(f(z0)) → c2(A__F(mark(z0)), MARK(z0))
K tuples:none
Defined Rule Symbols:
a__f, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c2
(5) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(f(a)) → a__f(g(f(a)))
a__f(z0) → f(z0)
mark(f(z0)) → a__f(mark(z0))
mark(a) → a
mark(g(z0)) → g(z0)
Tuples:
MARK(f(z0)) → c2(MARK(z0))
S tuples:
MARK(f(z0)) → c2(MARK(z0))
K tuples:none
Defined Rule Symbols:
a__f, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c2
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(f(z0)) → c2(MARK(z0))
We considered the (Usable) Rules:none
And the Tuples:
MARK(f(z0)) → c2(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(MARK(x1)) = [5]x1
POL(c2(x1)) = x1
POL(f(x1)) = [1] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(f(a)) → a__f(g(f(a)))
a__f(z0) → f(z0)
mark(f(z0)) → a__f(mark(z0))
mark(a) → a
mark(g(z0)) → g(z0)
Tuples:
MARK(f(z0)) → c2(MARK(z0))
S tuples:none
K tuples:
MARK(f(z0)) → c2(MARK(z0))
Defined Rule Symbols:
a__f, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c2
(9) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))