Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

max(L(x)) → x
max(N(L(0), L(y))) → y
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

max(L(x)) → x
max(N(L(0), L(y))) → y
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

max(L(x)) → x
max(N(L(0), L(y))) → y
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

max(N(L(0), L(y))) → y
Used ordering:
Polynomial interpretation [25]:

POL(0) = 1   
POL(L(x1)) = x1   
POL(N(x1, x2)) = x1 + 2·x2   
POL(max(x1)) = x1   
POL(s(x1)) = x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

max(L(x)) → x
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

max(L(x)) → x
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
Used ordering:
Polynomial interpretation [25]:

POL(L(x1)) = x1   
POL(N(x1, x2)) = 2·x1 + 2·x2   
POL(max(x1)) = x1   
POL(s(x1)) = 1 + x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

max(L(x)) → x
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ Overlay + Local Confluence
QTRS
              ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

max(L(x)) → x
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

The set Q consists of the following terms:

max(L(x0))
max(N(L(x0), N(x1, x2)))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MAX(N(L(x), N(y, z))) → MAX(N(y, z))
MAX(N(L(x), N(y, z))) → MAX(N(L(x), L(max(N(y, z)))))

The TRS R consists of the following rules:

max(L(x)) → x
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

The set Q consists of the following terms:

max(L(x0))
max(N(L(x0), N(x1, x2)))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ Overlay + Local Confluence
            ↳ QTRS
              ↳ DependencyPairsProof
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MAX(N(L(x), N(y, z))) → MAX(N(y, z))
MAX(N(L(x), N(y, z))) → MAX(N(L(x), L(max(N(y, z)))))

The TRS R consists of the following rules:

max(L(x)) → x
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

The set Q consists of the following terms:

max(L(x0))
max(N(L(x0), N(x1, x2)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ Overlay + Local Confluence
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
QDP
                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

MAX(N(L(x), N(y, z))) → MAX(N(y, z))

The TRS R consists of the following rules:

max(L(x)) → x
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

The set Q consists of the following terms:

max(L(x0))
max(N(L(x0), N(x1, x2)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ Overlay + Local Confluence
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ UsableRulesProof
QDP
                          ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

MAX(N(L(x), N(y, z))) → MAX(N(y, z))

R is empty.
The set Q consists of the following terms:

max(L(x0))
max(N(L(x0), N(x1, x2)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

max(L(x0))
max(N(L(x0), N(x1, x2)))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ Overlay + Local Confluence
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
QDP
                              ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

MAX(N(L(x), N(y, z))) → MAX(N(y, z))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: