f(x, f(y, x)) → f(f(x, x), f(a, y))
↳ QTRS
↳ DependencyPairsProof
f(x, f(y, x)) → f(f(x, x), f(a, y))
F(x, f(y, x)) → F(a, y)
F(x, f(y, x)) → F(x, x)
F(x, f(y, x)) → F(f(x, x), f(a, y))
f(x, f(y, x)) → f(f(x, x), f(a, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
F(x, f(y, x)) → F(a, y)
F(x, f(y, x)) → F(x, x)
F(x, f(y, x)) → F(f(x, x), f(a, y))
f(x, f(y, x)) → f(f(x, x), f(a, y))
F.1-0(x, f.1-1(y, x)) → F.1-1(x, x)
F.0-0(x, f.1-0(y, x)) → F.1-1(a., y)
F.0-0(x, f.0-0(y, x)) → F.1-0(a., y)
F.1-0(x, f.0-1(y, x)) → F.0-0(f.1-1(x, x), f.1-0(a., y))
F.1-0(x, f.0-1(y, x)) → F.1-1(x, x)
F.0-0(x, f.1-0(y, x)) → F.0-0(x, x)
F.0-0(x, f.0-0(y, x)) → F.0-0(f.0-0(x, x), f.1-0(a., y))
F.1-0(x, f.1-1(y, x)) → F.0-0(f.1-1(x, x), f.1-1(a., y))
F.0-0(x, f.1-0(y, x)) → F.0-0(f.0-0(x, x), f.1-1(a., y))
F.1-0(x, f.0-1(y, x)) → F.1-0(a., y)
F.1-0(x, f.1-1(y, x)) → F.1-1(a., y)
F.0-0(x, f.0-0(y, x)) → F.0-0(x, x)
f.0-0(x, f.0-0(y, x)) → f.0-0(f.0-0(x, x), f.1-0(a., y))
f.1-0(x, f.1-1(y, x)) → f.0-0(f.1-1(x, x), f.1-1(a., y))
f.1-0(x, f.0-1(y, x)) → f.0-0(f.1-1(x, x), f.1-0(a., y))
f.0-0(x, f.1-0(y, x)) → f.0-0(f.0-0(x, x), f.1-1(a., y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ SemLabProof2
F.1-0(x, f.1-1(y, x)) → F.1-1(x, x)
F.0-0(x, f.1-0(y, x)) → F.1-1(a., y)
F.0-0(x, f.0-0(y, x)) → F.1-0(a., y)
F.1-0(x, f.0-1(y, x)) → F.0-0(f.1-1(x, x), f.1-0(a., y))
F.1-0(x, f.0-1(y, x)) → F.1-1(x, x)
F.0-0(x, f.1-0(y, x)) → F.0-0(x, x)
F.0-0(x, f.0-0(y, x)) → F.0-0(f.0-0(x, x), f.1-0(a., y))
F.1-0(x, f.1-1(y, x)) → F.0-0(f.1-1(x, x), f.1-1(a., y))
F.0-0(x, f.1-0(y, x)) → F.0-0(f.0-0(x, x), f.1-1(a., y))
F.1-0(x, f.0-1(y, x)) → F.1-0(a., y)
F.1-0(x, f.1-1(y, x)) → F.1-1(a., y)
F.0-0(x, f.0-0(y, x)) → F.0-0(x, x)
f.0-0(x, f.0-0(y, x)) → f.0-0(f.0-0(x, x), f.1-0(a., y))
f.1-0(x, f.1-1(y, x)) → f.0-0(f.1-1(x, x), f.1-1(a., y))
f.1-0(x, f.0-1(y, x)) → f.0-0(f.1-1(x, x), f.1-0(a., y))
f.0-0(x, f.1-0(y, x)) → f.0-0(f.0-0(x, x), f.1-1(a., y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ SemLabProof2
F.1-0(x, f.0-1(y, x)) → F.0-0(f.1-1(x, x), f.1-0(a., y))
F.0-0(x, f.0-0(y, x)) → F.1-0(a., y)
F.0-0(x, f.1-0(y, x)) → F.0-0(x, x)
F.0-0(x, f.0-0(y, x)) → F.0-0(f.0-0(x, x), f.1-0(a., y))
F.1-0(x, f.0-1(y, x)) → F.1-0(a., y)
F.0-0(x, f.0-0(y, x)) → F.0-0(x, x)
f.0-0(x, f.0-0(y, x)) → f.0-0(f.0-0(x, x), f.1-0(a., y))
f.1-0(x, f.1-1(y, x)) → f.0-0(f.1-1(x, x), f.1-1(a., y))
f.1-0(x, f.0-1(y, x)) → f.0-0(f.1-1(x, x), f.1-0(a., y))
f.0-0(x, f.1-0(y, x)) → f.0-0(f.0-0(x, x), f.1-1(a., y))
The following rules are removed from R:
F.1-0(x, f.0-1(y, x)) → F.0-0(f.1-1(x, x), f.1-0(a., y))
F.1-0(x, f.0-1(y, x)) → F.1-0(a., y)
Used ordering: POLO with Polynomial interpretation [25]:
f.1-0(x, f.0-1(y, x)) → f.0-0(f.1-1(x, x), f.1-0(a., y))
POL(F.0-0(x1, x2)) = x1 + x2
POL(F.1-0(x1, x2)) = x1 + x2
POL(a.) = 0
POL(f.0-0(x1, x2)) = x1 + x2
POL(f.0-1(x1, x2)) = 1 + x1 + x2
POL(f.1-0(x1, x2)) = x1 + x2
POL(f.1-1(x1, x2)) = x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ SemLabProof2
F.0-0(x, f.0-0(y, x)) → F.1-0(a., y)
F.0-0(x, f.0-0(y, x)) → F.0-0(f.0-0(x, x), f.1-0(a., y))
F.0-0(x, f.1-0(y, x)) → F.0-0(x, x)
F.0-0(x, f.0-0(y, x)) → F.0-0(x, x)
f.1-0(x, f.1-1(y, x)) → f.0-0(f.1-1(x, x), f.1-1(a., y))
f.0-0(x, f.0-0(y, x)) → f.0-0(f.0-0(x, x), f.1-0(a., y))
f.0-0(x, f.1-0(y, x)) → f.0-0(f.0-0(x, x), f.1-1(a., y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
F.0-0(x, f.1-0(y, x)) → F.0-0(x, x)
F.0-0(x, f.0-0(y, x)) → F.0-0(f.0-0(x, x), f.1-0(a., y))
F.0-0(x, f.0-0(y, x)) → F.0-0(x, x)
f.1-0(x, f.1-1(y, x)) → f.0-0(f.1-1(x, x), f.1-1(a., y))
f.0-0(x, f.0-0(y, x)) → f.0-0(f.0-0(x, x), f.1-0(a., y))
f.0-0(x, f.1-0(y, x)) → f.0-0(f.0-0(x, x), f.1-1(a., y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F.0-0(x, f.1-0(y, x)) → F.0-0(x, x)
F.0-0(x, f.0-0(y, x)) → F.0-0(x, x)
Used ordering: Polynomial interpretation [25]:
F.0-0(x, f.0-0(y, x)) → F.0-0(f.0-0(x, x), f.1-0(a., y))
POL(F.0-0(x1, x2)) = x2
POL(a.) = 0
POL(f.0-0(x1, x2)) = 1 + x1 + x2
POL(f.1-0(x1, x2)) = 1 + x1 + x2
POL(f.1-1(x1, x2)) = 0
f.1-0(x, f.1-1(y, x)) → f.0-0(f.1-1(x, x), f.1-1(a., y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof2
F.0-0(x, f.0-0(y, x)) → F.0-0(f.0-0(x, x), f.1-0(a., y))
f.1-0(x, f.1-1(y, x)) → f.0-0(f.1-1(x, x), f.1-1(a., y))
f.0-0(x, f.0-0(y, x)) → f.0-0(f.0-0(x, x), f.1-0(a., y))
f.0-0(x, f.1-0(y, x)) → f.0-0(f.0-0(x, x), f.1-1(a., y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
F(x, f(y, x)) → F(f(x, x), f(a, y))
f(x, f(y, x)) → f(f(x, x), f(a, y))