Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(D, t) → 1
app(D, constant) → 0
app(D, app(app(+, x), y)) → app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) → app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) → app(app(-, app(D, x)), app(D, y))
app(D, app(minus, x)) → app(minus, app(D, x))
app(D, app(app(div, x), y)) → app(app(-, app(app(div, app(D, x)), y)), app(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2)))
app(D, app(ln, x)) → app(app(div, app(D, x)), x)
app(D, app(app(pow, x), y)) → app(app(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))), app(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(D, t) → 1
app(D, constant) → 0
app(D, app(app(+, x), y)) → app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) → app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) → app(app(-, app(D, x)), app(D, y))
app(D, app(minus, x)) → app(minus, app(D, x))
app(D, app(app(div, x), y)) → app(app(-, app(app(div, app(D, x)), y)), app(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2)))
app(D, app(ln, x)) → app(app(div, app(D, x)), x)
app(D, app(app(pow, x), y)) → app(app(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))), app(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP(D, app(app(pow, x), y)) → APP(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1))))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(D, app(app(*, x), y)) → APP(app(*, y), app(D, x))
APP(D, app(app(*, x), y)) → APP(app(*, x), app(D, y))
APP(D, app(app(-, x), y)) → APP(D, y)
APP(D, app(app(-, x), y)) → APP(app(-, app(D, x)), app(D, y))
APP(D, app(app(div, x), y)) → APP(D, y)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(D, app(app(+, x), y)) → APP(D, y)
APP(D, app(minus, x)) → APP(minus, app(D, x))
APP(D, app(app(div, x), y)) → APP(app(pow, y), 2)
APP(D, app(app(pow, x), y)) → APP(app(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))), app(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y)))
APP(D, app(app(*, x), y)) → APP(D, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(D, app(app(pow, x), y)) → APP(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x)))
APP(D, app(app(*, x), y)) → APP(D, y)
APP(D, app(app(*, x), y)) → APP(+, app(app(*, y), app(D, x)))
APP(D, app(app(div, x), y)) → APP(pow, y)
APP(D, app(app(+, x), y)) → APP(+, app(D, x))
APP(D, app(app(+, x), y)) → APP(app(+, app(D, x)), app(D, y))
APP(D, app(app(pow, x), y)) → APP(-, y)
APP(D, app(app(*, x), y)) → APP(*, y)
APP(D, app(app(pow, x), y)) → APP(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))
APP(D, app(app(div, x), y)) → APP(app(div, app(D, x)), y)
APP(D, app(minus, x)) → APP(D, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(D, app(app(pow, x), y)) → APP(ln, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(D, app(app(pow, x), y)) → APP(D, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(D, app(ln, x)) → APP(D, x)
APP(D, app(app(+, x), y)) → APP(D, x)
APP(D, app(app(div, x), y)) → APP(app(-, app(app(div, app(D, x)), y)), app(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2)))
APP(D, app(app(pow, x), y)) → APP(*, y)
APP(D, app(app(div, x), y)) → APP(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(D, app(app(pow, x), y)) → APP(app(pow, x), app(app(-, y), 1))
APP(D, app(app(div, x), y)) → APP(app(*, x), app(D, y))
APP(D, app(app(*, x), y)) → APP(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
APP(D, app(app(pow, x), y)) → APP(app(*, app(app(pow, x), y)), app(ln, x))
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(D, app(app(pow, x), y)) → APP(*, app(app(*, app(app(pow, x), y)), app(ln, x)))
APP(D, app(ln, x)) → APP(div, app(D, x))
APP(D, app(app(-, x), y)) → APP(-, app(D, x))
APP(D, app(app(pow, x), y)) → APP(app(*, y), app(app(pow, x), app(app(-, y), 1)))
APP(D, app(ln, x)) → APP(app(div, app(D, x)), x)
APP(D, app(app(pow, x), y)) → APP(D, y)
APP(D, app(app(-, x), y)) → APP(D, x)
APP(D, app(app(pow, x), y)) → APP(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(D, app(app(pow, x), y)) → APP(app(-, y), 1)
APP(D, app(app(div, x), y)) → APP(div, app(D, x))
APP(D, app(app(div, x), y)) → APP(div, app(app(*, x), app(D, y)))
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(D, app(app(pow, x), y)) → APP(*, app(app(pow, x), y))
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(D, app(app(div, x), y)) → APP(-, app(app(div, app(D, x)), y))
APP(D, app(app(div, x), y)) → APP(D, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(D, app(app(div, x), y)) → APP(*, x)

The TRS R consists of the following rules:

app(D, t) → 1
app(D, constant) → 0
app(D, app(app(+, x), y)) → app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) → app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) → app(app(-, app(D, x)), app(D, y))
app(D, app(minus, x)) → app(minus, app(D, x))
app(D, app(app(div, x), y)) → app(app(-, app(app(div, app(D, x)), y)), app(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2)))
app(D, app(ln, x)) → app(app(div, app(D, x)), x)
app(D, app(app(pow, x), y)) → app(app(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))), app(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(D, app(app(pow, x), y)) → APP(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1))))
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(filter2, app(f, x)), f)
APP(D, app(app(*, x), y)) → APP(app(*, y), app(D, x))
APP(D, app(app(*, x), y)) → APP(app(*, x), app(D, y))
APP(D, app(app(-, x), y)) → APP(D, y)
APP(D, app(app(-, x), y)) → APP(app(-, app(D, x)), app(D, y))
APP(D, app(app(div, x), y)) → APP(D, y)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(app(filter2, app(f, x)), f), x), xs)
APP(D, app(app(+, x), y)) → APP(D, y)
APP(D, app(minus, x)) → APP(minus, app(D, x))
APP(D, app(app(div, x), y)) → APP(app(pow, y), 2)
APP(D, app(app(pow, x), y)) → APP(app(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))), app(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y)))
APP(D, app(app(*, x), y)) → APP(D, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(filter, f)
APP(app(filter, f), app(app(cons, x), xs)) → APP(app(app(filter2, app(f, x)), f), x)
APP(D, app(app(pow, x), y)) → APP(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x)))
APP(D, app(app(*, x), y)) → APP(D, y)
APP(D, app(app(*, x), y)) → APP(+, app(app(*, y), app(D, x)))
APP(D, app(app(div, x), y)) → APP(pow, y)
APP(D, app(app(+, x), y)) → APP(+, app(D, x))
APP(D, app(app(+, x), y)) → APP(app(+, app(D, x)), app(D, y))
APP(D, app(app(pow, x), y)) → APP(-, y)
APP(D, app(app(*, x), y)) → APP(*, y)
APP(D, app(app(pow, x), y)) → APP(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))
APP(D, app(app(div, x), y)) → APP(app(div, app(D, x)), y)
APP(D, app(minus, x)) → APP(D, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(cons, app(f, x))
APP(D, app(app(pow, x), y)) → APP(ln, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(cons, app(f, x)), app(app(map, f), xs))
APP(D, app(app(pow, x), y)) → APP(D, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(D, app(ln, x)) → APP(D, x)
APP(D, app(app(+, x), y)) → APP(D, x)
APP(D, app(app(div, x), y)) → APP(app(-, app(app(div, app(D, x)), y)), app(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2)))
APP(D, app(app(pow, x), y)) → APP(*, y)
APP(D, app(app(div, x), y)) → APP(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2))
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
APP(D, app(app(pow, x), y)) → APP(app(pow, x), app(app(-, y), 1))
APP(D, app(app(div, x), y)) → APP(app(*, x), app(D, y))
APP(D, app(app(*, x), y)) → APP(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
APP(D, app(app(pow, x), y)) → APP(app(*, app(app(pow, x), y)), app(ln, x))
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(D, app(app(pow, x), y)) → APP(*, app(app(*, app(app(pow, x), y)), app(ln, x)))
APP(D, app(ln, x)) → APP(div, app(D, x))
APP(D, app(app(-, x), y)) → APP(-, app(D, x))
APP(D, app(app(pow, x), y)) → APP(app(*, y), app(app(pow, x), app(app(-, y), 1)))
APP(D, app(ln, x)) → APP(app(div, app(D, x)), x)
APP(D, app(app(pow, x), y)) → APP(D, y)
APP(D, app(app(-, x), y)) → APP(D, x)
APP(D, app(app(pow, x), y)) → APP(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y))
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(D, app(app(pow, x), y)) → APP(app(-, y), 1)
APP(D, app(app(div, x), y)) → APP(div, app(D, x))
APP(D, app(app(div, x), y)) → APP(div, app(app(*, x), app(D, y)))
APP(app(app(app(filter2, true), f), x), xs) → APP(cons, x)
APP(app(filter, f), app(app(cons, x), xs)) → APP(filter2, app(f, x))
APP(D, app(app(pow, x), y)) → APP(*, app(app(pow, x), y))
APP(app(app(app(filter2, true), f), x), xs) → APP(filter, f)
APP(D, app(app(div, x), y)) → APP(-, app(app(div, app(D, x)), y))
APP(D, app(app(div, x), y)) → APP(D, x)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(cons, x), app(app(filter, f), xs))
APP(D, app(app(div, x), y)) → APP(*, x)

The TRS R consists of the following rules:

app(D, t) → 1
app(D, constant) → 0
app(D, app(app(+, x), y)) → app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) → app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) → app(app(-, app(D, x)), app(D, y))
app(D, app(minus, x)) → app(minus, app(D, x))
app(D, app(app(div, x), y)) → app(app(-, app(app(div, app(D, x)), y)), app(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2)))
app(D, app(ln, x)) → app(app(div, app(D, x)), x)
app(D, app(app(pow, x), y)) → app(app(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))), app(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 46 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(D, app(app(pow, x), y)) → APP(D, x)
APP(D, app(ln, x)) → APP(D, x)
APP(D, app(app(-, x), y)) → APP(D, y)
APP(D, app(app(pow, x), y)) → APP(D, y)
APP(D, app(app(+, x), y)) → APP(D, x)
APP(D, app(app(-, x), y)) → APP(D, x)
APP(D, app(app(div, x), y)) → APP(D, y)
APP(D, app(minus, x)) → APP(D, x)
APP(D, app(app(*, x), y)) → APP(D, y)
APP(D, app(app(*, x), y)) → APP(D, x)
APP(D, app(app(div, x), y)) → APP(D, x)
APP(D, app(app(+, x), y)) → APP(D, y)

The TRS R consists of the following rules:

app(D, t) → 1
app(D, constant) → 0
app(D, app(app(+, x), y)) → app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) → app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) → app(app(-, app(D, x)), app(D, y))
app(D, app(minus, x)) → app(minus, app(D, x))
app(D, app(app(div, x), y)) → app(app(-, app(app(div, app(D, x)), y)), app(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2)))
app(D, app(ln, x)) → app(app(div, app(D, x)), x)
app(D, app(app(pow, x), y)) → app(app(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))), app(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(D, app(app(pow, x), y)) → APP(D, x)
APP(D, app(ln, x)) → APP(D, x)
APP(D, app(app(-, x), y)) → APP(D, y)
APP(D, app(app(pow, x), y)) → APP(D, y)
APP(D, app(app(+, x), y)) → APP(D, x)
APP(D, app(app(-, x), y)) → APP(D, x)
APP(D, app(app(div, x), y)) → APP(D, y)
APP(D, app(minus, x)) → APP(D, x)
APP(D, app(app(*, x), y)) → APP(D, y)
APP(D, app(app(*, x), y)) → APP(D, x)
APP(D, app(app(div, x), y)) → APP(D, x)
APP(D, app(app(+, x), y)) → APP(D, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(*) = 0   
POL(APP(x1, x2)) = (4)x_2   
POL(ln) = 4   
POL(minus) = 4   
POL(D) = 0   
POL(-) = 4   
POL(div) = 4   
POL(pow) = 4   
POL(app(x1, x2)) = 1 + (4)x_1 + (4)x_2   
POL(+) = 4   
The value of delta used in the strict ordering is 20.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(D, t) → 1
app(D, constant) → 0
app(D, app(app(+, x), y)) → app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) → app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) → app(app(-, app(D, x)), app(D, y))
app(D, app(minus, x)) → app(minus, app(D, x))
app(D, app(app(div, x), y)) → app(app(-, app(app(div, app(D, x)), y)), app(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2)))
app(D, app(ln, x)) → app(app(div, app(D, x)), x)
app(D, app(app(pow, x), y)) → app(app(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))), app(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)

The TRS R consists of the following rules:

app(D, t) → 1
app(D, constant) → 0
app(D, app(app(+, x), y)) → app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) → app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) → app(app(-, app(D, x)), app(D, y))
app(D, app(minus, x)) → app(minus, app(D, x))
app(D, app(app(div, x), y)) → app(app(-, app(app(div, app(D, x)), y)), app(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2)))
app(D, app(ln, x)) → app(app(div, app(D, x)), x)
app(D, app(app(pow, x), y)) → app(app(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))), app(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(filter, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(app(app(filter2, false), f), x), xs) → APP(app(filter, f), xs)
APP(app(app(app(filter2, true), f), x), xs) → APP(app(filter, f), xs)
APP(app(map, f), app(app(cons, x), xs)) → APP(f, x)
APP(app(map, f), app(app(cons, x), xs)) → APP(app(map, f), xs)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (4)x_1 + (4)x_2   
POL(cons) = 4   
POL(true) = 4   
POL(map) = 4   
POL(false) = 1   
POL(app(x1, x2)) = 4 + (4)x_1 + x_2   
POL(filter2) = 2   
POL(filter) = 4   
The value of delta used in the strict ordering is 336.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(D, t) → 1
app(D, constant) → 0
app(D, app(app(+, x), y)) → app(app(+, app(D, x)), app(D, y))
app(D, app(app(*, x), y)) → app(app(+, app(app(*, y), app(D, x))), app(app(*, x), app(D, y)))
app(D, app(app(-, x), y)) → app(app(-, app(D, x)), app(D, y))
app(D, app(minus, x)) → app(minus, app(D, x))
app(D, app(app(div, x), y)) → app(app(-, app(app(div, app(D, x)), y)), app(app(div, app(app(*, x), app(D, y))), app(app(pow, y), 2)))
app(D, app(ln, x)) → app(app(div, app(D, x)), x)
app(D, app(app(pow, x), y)) → app(app(+, app(app(*, app(app(*, y), app(app(pow, x), app(app(-, y), 1)))), app(D, x))), app(app(*, app(app(*, app(app(pow, x), y)), app(ln, x))), app(D, y)))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, x), xs)) → app(app(cons, app(f, x)), app(app(map, f), xs))
app(app(filter, f), nil) → nil
app(app(filter, f), app(app(cons, x), xs)) → app(app(app(app(filter2, app(f, x)), f), x), xs)
app(app(app(app(filter2, true), f), x), xs) → app(app(cons, x), app(app(filter, f), xs))
app(app(app(app(filter2, false), f), x), xs) → app(app(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.