Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(if_min, app'(app'(le, n), m))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(minsort, app'(app'(app, app'(app'(rm, n), x)), y))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(add, app'(f, x)), app'(app'(map, f), xs))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(eq, n), m)
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(if_rm, app'(app'(eq, n), m)), n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x))))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(filter2, app'(f, x)), f)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(le, n), m)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(filter2, app'(f, x)), f), x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(add, x)
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(le, x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(add, m), app'(app'(rm, n), x))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(app, app'(app'(rm, n), x)), y)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(filter, f)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(add, app'(f, x))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(min, app'(app'(add, n), x))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(filter2, app'(f, x))
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(filter, f)
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(app, x), y))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(rm, n)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(eq, n), app'(min, app'(app'(add, n), x)))
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(minsort, x)
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(add, n), x)
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(eq, x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(add, x), app'(app'(filter, f), xs))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app, x)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(add, n), y)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(eq, n)
APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(le, n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(eq, n)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app, app'(app'(rm, n), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(if_rm, app'(app'(eq, n), m))
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(if_min, app'(app'(le, n), m))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(minsort, app'(app'(app, app'(app'(rm, n), x)), y))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(add, app'(f, x)), app'(app'(map, f), xs))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(eq, n), m)
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(if_rm, app'(app'(eq, n), m)), n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x))))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(filter2, app'(f, x)), f)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(le, n), m)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(filter2, app'(f, x)), f), x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(add, x)
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(le, x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(add, m), app'(app'(rm, n), x))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(app, app'(app'(rm, n), x)), y)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(filter, f)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(add, app'(f, x))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(min, app'(app'(add, n), x))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(filter2, app'(f, x))
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(filter, f)
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(app, x), y))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(rm, n)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(eq, n), app'(min, app'(app'(add, n), x)))
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(minsort, x)
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(add, n), x)
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(eq, x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(add, x), app'(app'(filter, f), xs))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app, x)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(add, n), y)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(eq, n)
APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(le, n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(eq, n)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app, app'(app'(rm, n), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(if_rm, app'(app'(eq, n), m))
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 7 SCCs with 37 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ ATransformationProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)

R is empty.
The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We have applied the A-Transformation [17] to get from an applicative problem to a standard problem.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
QDP
                        ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

app1(add(n, x), y) → app1(x, y)

R is empty.
The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
                      ↳ QDP
                        ↳ QReductionProof
QDP
                            ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

app1(add(n, x), y) → app1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ ATransformationProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)

R is empty.
The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We have applied the A-Transformation [17] to get from an applicative problem to a standard problem.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
QDP
                        ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

le1(s(x), s(y)) → le1(x, y)

R is empty.
The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
                      ↳ QDP
                        ↳ QReductionProof
QDP
                            ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

le1(s(x), s(y)) → le1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ ATransformationProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))

The TRS R consists of the following rules:

app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We have applied the A-Transformation [17] to get from an applicative problem to a standard problem.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
QDP
                        ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

if_min1(true, add(n, add(m, x))) → min1(add(n, x))
if_min1(false, add(n, add(m, x))) → min1(add(m, x))
min1(add(n, add(m, x))) → if_min1(le(n, m), add(n, add(m, x)))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
                      ↳ QDP
                        ↳ QReductionProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

if_min1(true, add(n, add(m, x))) → min1(add(n, x))
if_min1(false, add(n, add(m, x))) → min1(add(m, x))
min1(add(n, add(m, x))) → if_min1(le(n, m), add(n, add(m, x)))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


min1(add(n, add(m, x))) → if_min1(le(n, m), add(n, add(m, x)))
The remaining pairs can at least be oriented weakly.

if_min1(true, add(n, add(m, x))) → min1(add(n, x))
if_min1(false, add(n, add(m, x))) → min1(add(m, x))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(add(x1, x2)) = 1 + x2   
POL(false) = 0   
POL(if_min1(x1, x2)) = x2   
POL(le(x1, x2)) = 0   
POL(min1(x1)) = 1 + x1   
POL(s(x1)) = 0   
POL(true) = 0   

The following usable rules [17] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
                      ↳ QDP
                        ↳ QReductionProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ DependencyGraphProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

if_min1(true, add(n, add(m, x))) → min1(add(n, x))
if_min1(false, add(n, add(m, x))) → min1(add(m, x))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ ATransformationProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)

R is empty.
The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We have applied the A-Transformation [17] to get from an applicative problem to a standard problem.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
QDP
                        ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

eq1(s(x), s(y)) → eq1(x, y)

R is empty.
The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
                      ↳ QDP
                        ↳ QReductionProof
QDP
                            ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

eq1(s(x), s(y)) → eq1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ ATransformationProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We have applied the A-Transformation [17] to get from an applicative problem to a standard problem.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
QDP
                        ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

if_rm1(true, n, add(m, x)) → rm1(n, x)
if_rm1(false, n, add(m, x)) → rm1(n, x)
rm1(n, add(m, x)) → if_rm1(eq(n, m), n, add(m, x))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
                      ↳ QDP
                        ↳ QReductionProof
QDP
                            ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

if_rm1(true, n, add(m, x)) → rm1(n, x)
rm1(n, add(m, x)) → if_rm1(eq(n, m), n, add(m, x))
if_rm1(false, n, add(m, x)) → rm1(n, x)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ ATransformationProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)

The TRS R consists of the following rules:

app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(min, app'(app'(add, n), nil)) → n
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We have applied the A-Transformation [17] to get from an applicative problem to a standard problem.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
QDP
                        ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

if_minsort1(false, add(n, x), y) → minsort1(x, add(n, y))
if_minsort1(true, add(n, x), y) → minsort1(app(rm(n, x), y), nil)
minsort1(add(n, x), y) → if_minsort1(eq(n, min(add(n, x))), add(n, x), y)

The TRS R consists of the following rules:

rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
min(add(n, nil)) → n
if_min(true, add(n, add(m, x))) → min(add(n, x))
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(false, add(n, add(m, x))) → min(add(m, x))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))
minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

minsort(nil, nil)
minsort(add(x0, x1), x2)
if_minsort(true, add(x0, x1), x2)
if_minsort(false, add(x0, x1), x2)
map(x0, nil)
map(x0, add(x1, x2))
filter(x0, nil)
filter(x0, add(x1, x2))
filter2(true, x0, x1, x2)
filter2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
                      ↳ QDP
                        ↳ QReductionProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

if_minsort1(false, add(n, x), y) → minsort1(x, add(n, y))
if_minsort1(true, add(n, x), y) → minsort1(app(rm(n, x), y), nil)
minsort1(add(n, x), y) → if_minsort1(eq(n, min(add(n, x))), add(n, x), y)

The TRS R consists of the following rules:

rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
min(add(n, nil)) → n
if_min(true, add(n, add(m, x))) → min(add(n, x))
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(false, add(n, add(m, x))) → min(add(m, x))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


if_minsort1(true, add(n, x), y) → minsort1(app(rm(n, x), y), nil)
The remaining pairs can at least be oriented weakly.

if_minsort1(false, add(n, x), y) → minsort1(x, add(n, y))
minsort1(add(n, x), y) → if_minsort1(eq(n, min(add(n, x))), add(n, x), y)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(add(x1, x2)) = 1 + x2   
POL(app(x1, x2)) = x1 + x2   
POL(eq(x1, x2)) = 0   
POL(false) = 0   
POL(if_min(x1, x2)) = 0   
POL(if_minsort1(x1, x2, x3)) = x2 + x3   
POL(if_rm(x1, x2, x3)) = x3   
POL(le(x1, x2)) = 1   
POL(min(x1)) = 0   
POL(minsort1(x1, x2)) = x1 + x2   
POL(nil) = 0   
POL(rm(x1, x2)) = x2   
POL(s(x1)) = 0   
POL(true) = 0   

The following usable rules [17] were oriented:

if_rm(false, n, add(m, x)) → add(m, rm(n, x))
app(add(n, x), y) → add(n, app(x, y))
app(nil, y) → y
rm(n, nil) → nil
if_rm(true, n, add(m, x)) → rm(n, x)
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
                      ↳ QDP
                        ↳ QReductionProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

if_minsort1(false, add(n, x), y) → minsort1(x, add(n, y))
minsort1(add(n, x), y) → if_minsort1(eq(n, min(add(n, x))), add(n, x), y)

The TRS R consists of the following rules:

rm(n, nil) → nil
rm(n, add(m, x)) → if_rm(eq(n, m), n, add(m, x))
if_rm(true, n, add(m, x)) → rm(n, x)
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if_rm(false, n, add(m, x)) → add(m, rm(n, x))
min(add(n, nil)) → n
if_min(true, add(n, add(m, x))) → min(add(n, x))
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(false, add(n, add(m, x))) → min(add(m, x))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
                      ↳ QDP
                        ↳ QReductionProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

if_minsort1(false, add(n, x), y) → minsort1(x, add(n, y))
minsort1(add(n, x), y) → if_minsort1(eq(n, min(add(n, x))), add(n, x), y)

The TRS R consists of the following rules:

min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(false, add(n, add(m, x))) → min(add(m, x))
if_min(true, add(n, add(m, x))) → min(add(n, x))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
app(nil, x0)
app(add(x0, x1), x2)
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

app(nil, x0)
app(add(x0, x1), x2)
rm(x0, nil)
rm(x0, add(x1, x2))
if_rm(true, x0, add(x1, x2))
if_rm(false, x0, add(x1, x2))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ ATransformationProof
                      ↳ QDP
                        ↳ QReductionProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
QDP
                                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

if_minsort1(false, add(n, x), y) → minsort1(x, add(n, y))
minsort1(add(n, x), y) → if_minsort1(eq(n, min(add(n, x))), add(n, x), y)

The TRS R consists of the following rules:

min(add(n, nil)) → n
min(add(n, add(m, x))) → if_min(le(n, m), add(n, add(m, x)))
if_min(false, add(n, add(m, x))) → min(add(m, x))
if_min(true, add(n, add(m, x))) → min(add(n, x))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
min(add(x0, nil))
min(add(x0, add(x1, x2)))
if_min(true, add(x0, add(x1, x2)))
if_min(false, add(x0, add(x1, x2)))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

The set Q consists of the following terms:

app'(app'(eq, 0), 0)
app'(app'(eq, 0), app'(s, x0))
app'(app'(eq, app'(s, x0)), 0)
app'(app'(eq, app'(s, x0)), app'(s, x1))
app'(app'(le, 0), x0)
app'(app'(le, app'(s, x0)), 0)
app'(app'(le, app'(s, x0)), app'(s, x1))
app'(app'(app, nil), x0)
app'(app'(app, app'(app'(add, x0), x1)), x2)
app'(min, app'(app'(add, x0), nil))
app'(min, app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, true), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(if_min, false), app'(app'(add, x0), app'(app'(add, x1), x2)))
app'(app'(rm, x0), nil)
app'(app'(rm, x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, true), x0), app'(app'(add, x1), x2))
app'(app'(app'(if_rm, false), x0), app'(app'(add, x1), x2))
app'(app'(minsort, nil), nil)
app'(app'(minsort, app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, true), app'(app'(add, x0), x1)), x2)
app'(app'(app'(if_minsort, false), app'(app'(add, x0), x1)), x2)
app'(app'(map, x0), nil)
app'(app'(map, x0), app'(app'(add, x1), x2))
app'(app'(filter, x0), nil)
app'(app'(filter, x0), app'(app'(add, x1), x2))
app'(app'(app'(app'(filter2, true), x0), x1), x2)
app'(app'(app'(app'(filter2, false), x0), x1), x2)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: