Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

H(e(x), y) → H(d(x, y), s(y))
D(g(g(0, x), y), s(z)) → G(e(x), d(g(g(0, x), y), z))
H(e(x), y) → D(x, y)
D(g(x, y), z) → D(x, z)
D(g(x, y), z) → G(d(x, z), e(y))
G(e(x), e(y)) → G(x, y)
D(g(g(0, x), y), s(z)) → D(g(g(0, x), y), z)

The TRS R consists of the following rules:

h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

H(e(x), y) → H(d(x, y), s(y))
D(g(g(0, x), y), s(z)) → G(e(x), d(g(g(0, x), y), z))
H(e(x), y) → D(x, y)
D(g(x, y), z) → D(x, z)
D(g(x, y), z) → G(d(x, z), e(y))
G(e(x), e(y)) → G(x, y)
D(g(g(0, x), y), s(z)) → D(g(g(0, x), y), z)

The TRS R consists of the following rules:

h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

G(e(x), e(y)) → G(x, y)

The TRS R consists of the following rules:

h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


G(e(x), e(y)) → G(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(e(x1)) = 4 + (2)x_1   
POL(G(x1, x2)) = (3)x_2   
The value of delta used in the strict ordering is 12.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

D(g(x, y), z) → D(x, z)
D(g(g(0, x), y), s(z)) → D(g(g(0, x), y), z)

The TRS R consists of the following rules:

h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


D(g(x, y), z) → D(x, z)
D(g(g(0, x), y), s(z)) → D(g(g(0, x), y), z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(g(x1, x2)) = 1 + (2)x_1   
POL(D(x1, x2)) = (3)x_1 + (4)x_2   
POL(s(x1)) = 4 + (4)x_1   
POL(0) = 0   
The value of delta used in the strict ordering is 3.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

H(e(x), y) → H(d(x, y), s(y))

The TRS R consists of the following rules:

h(e(x), y) → h(d(x, y), s(y))
d(g(g(0, x), y), s(z)) → g(e(x), d(g(g(0, x), y), z))
d(g(g(0, x), y), 0) → e(y)
d(g(0, x), y) → e(x)
d(g(x, y), z) → g(d(x, z), e(y))
g(e(x), e(y)) → e(g(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.