Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0, 1, x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0, 1, x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
F(0, 1, x) → F(g(x), g(x), x)
F(x, g(y), z) → F(x, y, z)
F(g(x), y, z) → F(x, y, z)
F(x, y, g(z)) → F(x, y, z)
The TRS R consists of the following rules:
f(0, 1, x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
F(0, 1, x) → F(g(x), g(x), x)
F(x, g(y), z) → F(x, y, z)
F(g(x), y, z) → F(x, y, z)
F(x, y, g(z)) → F(x, y, z)
The TRS R consists of the following rules:
f(0, 1, x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
F(x, y, g(z)) → F(x, y, z)
The remaining pairs can at least be oriented weakly.
F(0, 1, x) → F(g(x), g(x), x)
F(x, g(y), z) → F(x, y, z)
F(g(x), y, z) → F(x, y, z)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
Tuple symbols:
M( F(x1, ..., x3) ) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
Q DP problem:
The TRS P consists of the following rules:
F(0, 1, x) → F(g(x), g(x), x)
F(x, g(y), z) → F(x, y, z)
F(g(x), y, z) → F(x, y, z)
The TRS R consists of the following rules:
f(0, 1, x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We found the following model for the rules of the TRS R.
Interpretation over the domain with elements from 0 to 1.f: 0
g: x0
0: 1
1: 0
F: 0
By semantic labelling [33] we obtain the following labelled TRS:Q DP problem:
The TRS P consists of the following rules:
F.1-0-1(x, g.0(y), z) → F.1-0-1(x, y, z)
F.0-1-1(g.0(x), y, z) → F.0-1-1(x, y, z)
F.1-0-0(x, g.0(y), z) → F.1-0-0(x, y, z)
F.0-1-0(g.0(x), y, z) → F.0-1-0(x, y, z)
F.1-0-1(g.1(x), y, z) → F.1-0-1(x, y, z)
F.1-1-0(g.1(x), y, z) → F.1-1-0(x, y, z)
F.0-0-1(g.0(x), y, z) → F.0-0-1(x, y, z)
F.1-1-1(g.1(x), y, z) → F.1-1-1(x, y, z)
F.0-0-0(g.0(x), y, z) → F.0-0-0(x, y, z)
F.1-1-1(x, g.1(y), z) → F.1-1-1(x, y, z)
F.1-1-0(x, g.1(y), z) → F.1-1-0(x, y, z)
F.0-1-1(x, g.1(y), z) → F.0-1-1(x, y, z)
F.1-0-0(g.1(x), y, z) → F.1-0-0(x, y, z)
F.0-0-0(x, g.0(y), z) → F.0-0-0(x, y, z)
F.1-0-1(0., 1., x) → F.1-1-1(g.1(x), g.1(x), x)
F.0-0-1(x, g.0(y), z) → F.0-0-1(x, y, z)
F.0-1-0(x, g.1(y), z) → F.0-1-0(x, y, z)
F.1-0-0(0., 1., x) → F.0-0-0(g.0(x), g.0(x), x)
The TRS R consists of the following rules:
f.0-1-1(x, y, g.1(z)) → g.0(f.0-1-1(x, y, z))
f.0-1-0(g.0(x), y, z) → g.0(f.0-1-0(x, y, z))
f.0-0-0(x, g.0(y), z) → g.0(f.0-0-0(x, y, z))
f.0-0-1(g.0(x), y, z) → g.0(f.0-0-1(x, y, z))
f.0-1-0(x, y, g.0(z)) → g.0(f.0-1-0(x, y, z))
f.1-0-1(g.1(x), y, z) → g.0(f.1-0-1(x, y, z))
f.0-1-1(x, g.1(y), z) → g.0(f.0-1-1(x, y, z))
f.1-1-0(g.1(x), y, z) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, g.0(y), z) → g.0(f.1-0-1(x, y, z))
f.0-0-0(x, y, g.0(z)) → g.0(f.0-0-0(x, y, z))
f.1-0-0(0., 1., x) → f.0-0-0(g.0(x), g.0(x), x)
f.0-1-1(g.0(x), y, z) → g.0(f.0-1-1(x, y, z))
f.1-0-0(x, g.0(y), z) → g.0(f.1-0-0(x, y, z))
f.0-0-1(x, g.0(y), z) → g.0(f.0-0-1(x, y, z))
f.1-0-1(0., 1., x) → f.1-1-1(g.1(x), g.1(x), x)
f.1-1-1(x, g.1(y), z) → g.0(f.1-1-1(x, y, z))
f.0-0-0(g.0(x), y, z) → g.0(f.0-0-0(x, y, z))
f.1-0-0(x, y, g.0(z)) → g.0(f.1-0-0(x, y, z))
f.1-1-0(x, y, g.0(z)) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, y, g.1(z)) → g.0(f.1-0-1(x, y, z))
f.0-0-1(x, y, g.1(z)) → g.0(f.0-0-1(x, y, z))
f.1-1-1(g.1(x), y, z) → g.0(f.1-1-1(x, y, z))
f.1-1-1(x, y, g.1(z)) → g.0(f.1-1-1(x, y, z))
f.0-1-0(x, g.1(y), z) → g.0(f.0-1-0(x, y, z))
f.1-1-0(x, g.1(y), z) → g.0(f.1-1-0(x, y, z))
f.1-0-0(g.1(x), y, z) → g.0(f.1-0-0(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
F.1-0-1(x, g.0(y), z) → F.1-0-1(x, y, z)
F.0-1-1(g.0(x), y, z) → F.0-1-1(x, y, z)
F.1-0-0(x, g.0(y), z) → F.1-0-0(x, y, z)
F.0-1-0(g.0(x), y, z) → F.0-1-0(x, y, z)
F.1-0-1(g.1(x), y, z) → F.1-0-1(x, y, z)
F.1-1-0(g.1(x), y, z) → F.1-1-0(x, y, z)
F.0-0-1(g.0(x), y, z) → F.0-0-1(x, y, z)
F.1-1-1(g.1(x), y, z) → F.1-1-1(x, y, z)
F.0-0-0(g.0(x), y, z) → F.0-0-0(x, y, z)
F.1-1-1(x, g.1(y), z) → F.1-1-1(x, y, z)
F.1-1-0(x, g.1(y), z) → F.1-1-0(x, y, z)
F.0-1-1(x, g.1(y), z) → F.0-1-1(x, y, z)
F.1-0-0(g.1(x), y, z) → F.1-0-0(x, y, z)
F.0-0-0(x, g.0(y), z) → F.0-0-0(x, y, z)
F.1-0-1(0., 1., x) → F.1-1-1(g.1(x), g.1(x), x)
F.0-0-1(x, g.0(y), z) → F.0-0-1(x, y, z)
F.0-1-0(x, g.1(y), z) → F.0-1-0(x, y, z)
F.1-0-0(0., 1., x) → F.0-0-0(g.0(x), g.0(x), x)
The TRS R consists of the following rules:
f.0-1-1(x, y, g.1(z)) → g.0(f.0-1-1(x, y, z))
f.0-1-0(g.0(x), y, z) → g.0(f.0-1-0(x, y, z))
f.0-0-0(x, g.0(y), z) → g.0(f.0-0-0(x, y, z))
f.0-0-1(g.0(x), y, z) → g.0(f.0-0-1(x, y, z))
f.0-1-0(x, y, g.0(z)) → g.0(f.0-1-0(x, y, z))
f.1-0-1(g.1(x), y, z) → g.0(f.1-0-1(x, y, z))
f.0-1-1(x, g.1(y), z) → g.0(f.0-1-1(x, y, z))
f.1-1-0(g.1(x), y, z) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, g.0(y), z) → g.0(f.1-0-1(x, y, z))
f.0-0-0(x, y, g.0(z)) → g.0(f.0-0-0(x, y, z))
f.1-0-0(0., 1., x) → f.0-0-0(g.0(x), g.0(x), x)
f.0-1-1(g.0(x), y, z) → g.0(f.0-1-1(x, y, z))
f.1-0-0(x, g.0(y), z) → g.0(f.1-0-0(x, y, z))
f.0-0-1(x, g.0(y), z) → g.0(f.0-0-1(x, y, z))
f.1-0-1(0., 1., x) → f.1-1-1(g.1(x), g.1(x), x)
f.1-1-1(x, g.1(y), z) → g.0(f.1-1-1(x, y, z))
f.0-0-0(g.0(x), y, z) → g.0(f.0-0-0(x, y, z))
f.1-0-0(x, y, g.0(z)) → g.0(f.1-0-0(x, y, z))
f.1-1-0(x, y, g.0(z)) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, y, g.1(z)) → g.0(f.1-0-1(x, y, z))
f.0-0-1(x, y, g.1(z)) → g.0(f.0-0-1(x, y, z))
f.1-1-1(g.1(x), y, z) → g.0(f.1-1-1(x, y, z))
f.1-1-1(x, y, g.1(z)) → g.0(f.1-1-1(x, y, z))
f.0-1-0(x, g.1(y), z) → g.0(f.0-1-0(x, y, z))
f.1-1-0(x, g.1(y), z) → g.0(f.1-1-0(x, y, z))
f.1-0-0(g.1(x), y, z) → g.0(f.1-0-0(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 8 SCCs with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F.1-1-1(g.1(x), y, z) → F.1-1-1(x, y, z)
F.1-1-1(x, g.1(y), z) → F.1-1-1(x, y, z)
The TRS R consists of the following rules:
f.0-1-1(x, y, g.1(z)) → g.0(f.0-1-1(x, y, z))
f.0-1-0(g.0(x), y, z) → g.0(f.0-1-0(x, y, z))
f.0-0-0(x, g.0(y), z) → g.0(f.0-0-0(x, y, z))
f.0-0-1(g.0(x), y, z) → g.0(f.0-0-1(x, y, z))
f.0-1-0(x, y, g.0(z)) → g.0(f.0-1-0(x, y, z))
f.1-0-1(g.1(x), y, z) → g.0(f.1-0-1(x, y, z))
f.0-1-1(x, g.1(y), z) → g.0(f.0-1-1(x, y, z))
f.1-1-0(g.1(x), y, z) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, g.0(y), z) → g.0(f.1-0-1(x, y, z))
f.0-0-0(x, y, g.0(z)) → g.0(f.0-0-0(x, y, z))
f.1-0-0(0., 1., x) → f.0-0-0(g.0(x), g.0(x), x)
f.0-1-1(g.0(x), y, z) → g.0(f.0-1-1(x, y, z))
f.1-0-0(x, g.0(y), z) → g.0(f.1-0-0(x, y, z))
f.0-0-1(x, g.0(y), z) → g.0(f.0-0-1(x, y, z))
f.1-0-1(0., 1., x) → f.1-1-1(g.1(x), g.1(x), x)
f.1-1-1(x, g.1(y), z) → g.0(f.1-1-1(x, y, z))
f.0-0-0(g.0(x), y, z) → g.0(f.0-0-0(x, y, z))
f.1-0-0(x, y, g.0(z)) → g.0(f.1-0-0(x, y, z))
f.1-1-0(x, y, g.0(z)) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, y, g.1(z)) → g.0(f.1-0-1(x, y, z))
f.0-0-1(x, y, g.1(z)) → g.0(f.0-0-1(x, y, z))
f.1-1-1(g.1(x), y, z) → g.0(f.1-1-1(x, y, z))
f.1-1-1(x, y, g.1(z)) → g.0(f.1-1-1(x, y, z))
f.0-1-0(x, g.1(y), z) → g.0(f.0-1-0(x, y, z))
f.1-1-0(x, g.1(y), z) → g.0(f.1-1-0(x, y, z))
f.1-0-0(g.1(x), y, z) → g.0(f.1-0-0(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
F.1-1-1(g.1(x), y, z) → F.1-1-1(x, y, z)
F.1-1-1(x, g.1(y), z) → F.1-1-1(x, y, z)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(F.1-1-1(x1, x2, x3)) = x1 + x2 + x3
POL(g.1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F.1-1-0(g.1(x), y, z) → F.1-1-0(x, y, z)
F.1-1-0(x, g.1(y), z) → F.1-1-0(x, y, z)
The TRS R consists of the following rules:
f.0-1-1(x, y, g.1(z)) → g.0(f.0-1-1(x, y, z))
f.0-1-0(g.0(x), y, z) → g.0(f.0-1-0(x, y, z))
f.0-0-0(x, g.0(y), z) → g.0(f.0-0-0(x, y, z))
f.0-0-1(g.0(x), y, z) → g.0(f.0-0-1(x, y, z))
f.0-1-0(x, y, g.0(z)) → g.0(f.0-1-0(x, y, z))
f.1-0-1(g.1(x), y, z) → g.0(f.1-0-1(x, y, z))
f.0-1-1(x, g.1(y), z) → g.0(f.0-1-1(x, y, z))
f.1-1-0(g.1(x), y, z) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, g.0(y), z) → g.0(f.1-0-1(x, y, z))
f.0-0-0(x, y, g.0(z)) → g.0(f.0-0-0(x, y, z))
f.1-0-0(0., 1., x) → f.0-0-0(g.0(x), g.0(x), x)
f.0-1-1(g.0(x), y, z) → g.0(f.0-1-1(x, y, z))
f.1-0-0(x, g.0(y), z) → g.0(f.1-0-0(x, y, z))
f.0-0-1(x, g.0(y), z) → g.0(f.0-0-1(x, y, z))
f.1-0-1(0., 1., x) → f.1-1-1(g.1(x), g.1(x), x)
f.1-1-1(x, g.1(y), z) → g.0(f.1-1-1(x, y, z))
f.0-0-0(g.0(x), y, z) → g.0(f.0-0-0(x, y, z))
f.1-0-0(x, y, g.0(z)) → g.0(f.1-0-0(x, y, z))
f.1-1-0(x, y, g.0(z)) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, y, g.1(z)) → g.0(f.1-0-1(x, y, z))
f.0-0-1(x, y, g.1(z)) → g.0(f.0-0-1(x, y, z))
f.1-1-1(g.1(x), y, z) → g.0(f.1-1-1(x, y, z))
f.1-1-1(x, y, g.1(z)) → g.0(f.1-1-1(x, y, z))
f.0-1-0(x, g.1(y), z) → g.0(f.0-1-0(x, y, z))
f.1-1-0(x, g.1(y), z) → g.0(f.1-1-0(x, y, z))
f.1-0-0(g.1(x), y, z) → g.0(f.1-0-0(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
F.1-1-0(g.1(x), y, z) → F.1-1-0(x, y, z)
F.1-1-0(x, g.1(y), z) → F.1-1-0(x, y, z)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(F.1-1-0(x1, x2, x3)) = x1 + x2 + x3
POL(g.1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F.1-0-1(x, g.0(y), z) → F.1-0-1(x, y, z)
F.1-0-1(g.1(x), y, z) → F.1-0-1(x, y, z)
The TRS R consists of the following rules:
f.0-1-1(x, y, g.1(z)) → g.0(f.0-1-1(x, y, z))
f.0-1-0(g.0(x), y, z) → g.0(f.0-1-0(x, y, z))
f.0-0-0(x, g.0(y), z) → g.0(f.0-0-0(x, y, z))
f.0-0-1(g.0(x), y, z) → g.0(f.0-0-1(x, y, z))
f.0-1-0(x, y, g.0(z)) → g.0(f.0-1-0(x, y, z))
f.1-0-1(g.1(x), y, z) → g.0(f.1-0-1(x, y, z))
f.0-1-1(x, g.1(y), z) → g.0(f.0-1-1(x, y, z))
f.1-1-0(g.1(x), y, z) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, g.0(y), z) → g.0(f.1-0-1(x, y, z))
f.0-0-0(x, y, g.0(z)) → g.0(f.0-0-0(x, y, z))
f.1-0-0(0., 1., x) → f.0-0-0(g.0(x), g.0(x), x)
f.0-1-1(g.0(x), y, z) → g.0(f.0-1-1(x, y, z))
f.1-0-0(x, g.0(y), z) → g.0(f.1-0-0(x, y, z))
f.0-0-1(x, g.0(y), z) → g.0(f.0-0-1(x, y, z))
f.1-0-1(0., 1., x) → f.1-1-1(g.1(x), g.1(x), x)
f.1-1-1(x, g.1(y), z) → g.0(f.1-1-1(x, y, z))
f.0-0-0(g.0(x), y, z) → g.0(f.0-0-0(x, y, z))
f.1-0-0(x, y, g.0(z)) → g.0(f.1-0-0(x, y, z))
f.1-1-0(x, y, g.0(z)) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, y, g.1(z)) → g.0(f.1-0-1(x, y, z))
f.0-0-1(x, y, g.1(z)) → g.0(f.0-0-1(x, y, z))
f.1-1-1(g.1(x), y, z) → g.0(f.1-1-1(x, y, z))
f.1-1-1(x, y, g.1(z)) → g.0(f.1-1-1(x, y, z))
f.0-1-0(x, g.1(y), z) → g.0(f.0-1-0(x, y, z))
f.1-1-0(x, g.1(y), z) → g.0(f.1-1-0(x, y, z))
f.1-0-0(g.1(x), y, z) → g.0(f.1-0-0(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
F.1-0-1(x, g.0(y), z) → F.1-0-1(x, y, z)
F.1-0-1(g.1(x), y, z) → F.1-0-1(x, y, z)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(F.1-0-1(x1, x2, x3)) = x1 + x2 + x3
POL(g.0(x1)) = x1
POL(g.1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F.0-1-1(g.0(x), y, z) → F.0-1-1(x, y, z)
F.0-1-1(x, g.1(y), z) → F.0-1-1(x, y, z)
The TRS R consists of the following rules:
f.0-1-1(x, y, g.1(z)) → g.0(f.0-1-1(x, y, z))
f.0-1-0(g.0(x), y, z) → g.0(f.0-1-0(x, y, z))
f.0-0-0(x, g.0(y), z) → g.0(f.0-0-0(x, y, z))
f.0-0-1(g.0(x), y, z) → g.0(f.0-0-1(x, y, z))
f.0-1-0(x, y, g.0(z)) → g.0(f.0-1-0(x, y, z))
f.1-0-1(g.1(x), y, z) → g.0(f.1-0-1(x, y, z))
f.0-1-1(x, g.1(y), z) → g.0(f.0-1-1(x, y, z))
f.1-1-0(g.1(x), y, z) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, g.0(y), z) → g.0(f.1-0-1(x, y, z))
f.0-0-0(x, y, g.0(z)) → g.0(f.0-0-0(x, y, z))
f.1-0-0(0., 1., x) → f.0-0-0(g.0(x), g.0(x), x)
f.0-1-1(g.0(x), y, z) → g.0(f.0-1-1(x, y, z))
f.1-0-0(x, g.0(y), z) → g.0(f.1-0-0(x, y, z))
f.0-0-1(x, g.0(y), z) → g.0(f.0-0-1(x, y, z))
f.1-0-1(0., 1., x) → f.1-1-1(g.1(x), g.1(x), x)
f.1-1-1(x, g.1(y), z) → g.0(f.1-1-1(x, y, z))
f.0-0-0(g.0(x), y, z) → g.0(f.0-0-0(x, y, z))
f.1-0-0(x, y, g.0(z)) → g.0(f.1-0-0(x, y, z))
f.1-1-0(x, y, g.0(z)) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, y, g.1(z)) → g.0(f.1-0-1(x, y, z))
f.0-0-1(x, y, g.1(z)) → g.0(f.0-0-1(x, y, z))
f.1-1-1(g.1(x), y, z) → g.0(f.1-1-1(x, y, z))
f.1-1-1(x, y, g.1(z)) → g.0(f.1-1-1(x, y, z))
f.0-1-0(x, g.1(y), z) → g.0(f.0-1-0(x, y, z))
f.1-1-0(x, g.1(y), z) → g.0(f.1-1-0(x, y, z))
f.1-0-0(g.1(x), y, z) → g.0(f.1-0-0(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
F.0-1-1(g.0(x), y, z) → F.0-1-1(x, y, z)
F.0-1-1(x, g.1(y), z) → F.0-1-1(x, y, z)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(F.0-1-1(x1, x2, x3)) = x1 + x2 + x3
POL(g.0(x1)) = x1
POL(g.1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F.0-1-0(g.0(x), y, z) → F.0-1-0(x, y, z)
F.0-1-0(x, g.1(y), z) → F.0-1-0(x, y, z)
The TRS R consists of the following rules:
f.0-1-1(x, y, g.1(z)) → g.0(f.0-1-1(x, y, z))
f.0-1-0(g.0(x), y, z) → g.0(f.0-1-0(x, y, z))
f.0-0-0(x, g.0(y), z) → g.0(f.0-0-0(x, y, z))
f.0-0-1(g.0(x), y, z) → g.0(f.0-0-1(x, y, z))
f.0-1-0(x, y, g.0(z)) → g.0(f.0-1-0(x, y, z))
f.1-0-1(g.1(x), y, z) → g.0(f.1-0-1(x, y, z))
f.0-1-1(x, g.1(y), z) → g.0(f.0-1-1(x, y, z))
f.1-1-0(g.1(x), y, z) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, g.0(y), z) → g.0(f.1-0-1(x, y, z))
f.0-0-0(x, y, g.0(z)) → g.0(f.0-0-0(x, y, z))
f.1-0-0(0., 1., x) → f.0-0-0(g.0(x), g.0(x), x)
f.0-1-1(g.0(x), y, z) → g.0(f.0-1-1(x, y, z))
f.1-0-0(x, g.0(y), z) → g.0(f.1-0-0(x, y, z))
f.0-0-1(x, g.0(y), z) → g.0(f.0-0-1(x, y, z))
f.1-0-1(0., 1., x) → f.1-1-1(g.1(x), g.1(x), x)
f.1-1-1(x, g.1(y), z) → g.0(f.1-1-1(x, y, z))
f.0-0-0(g.0(x), y, z) → g.0(f.0-0-0(x, y, z))
f.1-0-0(x, y, g.0(z)) → g.0(f.1-0-0(x, y, z))
f.1-1-0(x, y, g.0(z)) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, y, g.1(z)) → g.0(f.1-0-1(x, y, z))
f.0-0-1(x, y, g.1(z)) → g.0(f.0-0-1(x, y, z))
f.1-1-1(g.1(x), y, z) → g.0(f.1-1-1(x, y, z))
f.1-1-1(x, y, g.1(z)) → g.0(f.1-1-1(x, y, z))
f.0-1-0(x, g.1(y), z) → g.0(f.0-1-0(x, y, z))
f.1-1-0(x, g.1(y), z) → g.0(f.1-1-0(x, y, z))
f.1-0-0(g.1(x), y, z) → g.0(f.1-0-0(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
F.0-1-0(g.0(x), y, z) → F.0-1-0(x, y, z)
F.0-1-0(x, g.1(y), z) → F.0-1-0(x, y, z)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(F.0-1-0(x1, x2, x3)) = x1 + x2 + x3
POL(g.0(x1)) = x1
POL(g.1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F.0-0-1(g.0(x), y, z) → F.0-0-1(x, y, z)
F.0-0-1(x, g.0(y), z) → F.0-0-1(x, y, z)
The TRS R consists of the following rules:
f.0-1-1(x, y, g.1(z)) → g.0(f.0-1-1(x, y, z))
f.0-1-0(g.0(x), y, z) → g.0(f.0-1-0(x, y, z))
f.0-0-0(x, g.0(y), z) → g.0(f.0-0-0(x, y, z))
f.0-0-1(g.0(x), y, z) → g.0(f.0-0-1(x, y, z))
f.0-1-0(x, y, g.0(z)) → g.0(f.0-1-0(x, y, z))
f.1-0-1(g.1(x), y, z) → g.0(f.1-0-1(x, y, z))
f.0-1-1(x, g.1(y), z) → g.0(f.0-1-1(x, y, z))
f.1-1-0(g.1(x), y, z) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, g.0(y), z) → g.0(f.1-0-1(x, y, z))
f.0-0-0(x, y, g.0(z)) → g.0(f.0-0-0(x, y, z))
f.1-0-0(0., 1., x) → f.0-0-0(g.0(x), g.0(x), x)
f.0-1-1(g.0(x), y, z) → g.0(f.0-1-1(x, y, z))
f.1-0-0(x, g.0(y), z) → g.0(f.1-0-0(x, y, z))
f.0-0-1(x, g.0(y), z) → g.0(f.0-0-1(x, y, z))
f.1-0-1(0., 1., x) → f.1-1-1(g.1(x), g.1(x), x)
f.1-1-1(x, g.1(y), z) → g.0(f.1-1-1(x, y, z))
f.0-0-0(g.0(x), y, z) → g.0(f.0-0-0(x, y, z))
f.1-0-0(x, y, g.0(z)) → g.0(f.1-0-0(x, y, z))
f.1-1-0(x, y, g.0(z)) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, y, g.1(z)) → g.0(f.1-0-1(x, y, z))
f.0-0-1(x, y, g.1(z)) → g.0(f.0-0-1(x, y, z))
f.1-1-1(g.1(x), y, z) → g.0(f.1-1-1(x, y, z))
f.1-1-1(x, y, g.1(z)) → g.0(f.1-1-1(x, y, z))
f.0-1-0(x, g.1(y), z) → g.0(f.0-1-0(x, y, z))
f.1-1-0(x, g.1(y), z) → g.0(f.1-1-0(x, y, z))
f.1-0-0(g.1(x), y, z) → g.0(f.1-0-0(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
F.0-0-1(g.0(x), y, z) → F.0-0-1(x, y, z)
F.0-0-1(x, g.0(y), z) → F.0-0-1(x, y, z)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(F.0-0-1(x1, x2, x3)) = x1 + x2 + x3
POL(g.0(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F.0-0-0(x, g.0(y), z) → F.0-0-0(x, y, z)
F.0-0-0(g.0(x), y, z) → F.0-0-0(x, y, z)
The TRS R consists of the following rules:
f.0-1-1(x, y, g.1(z)) → g.0(f.0-1-1(x, y, z))
f.0-1-0(g.0(x), y, z) → g.0(f.0-1-0(x, y, z))
f.0-0-0(x, g.0(y), z) → g.0(f.0-0-0(x, y, z))
f.0-0-1(g.0(x), y, z) → g.0(f.0-0-1(x, y, z))
f.0-1-0(x, y, g.0(z)) → g.0(f.0-1-0(x, y, z))
f.1-0-1(g.1(x), y, z) → g.0(f.1-0-1(x, y, z))
f.0-1-1(x, g.1(y), z) → g.0(f.0-1-1(x, y, z))
f.1-1-0(g.1(x), y, z) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, g.0(y), z) → g.0(f.1-0-1(x, y, z))
f.0-0-0(x, y, g.0(z)) → g.0(f.0-0-0(x, y, z))
f.1-0-0(0., 1., x) → f.0-0-0(g.0(x), g.0(x), x)
f.0-1-1(g.0(x), y, z) → g.0(f.0-1-1(x, y, z))
f.1-0-0(x, g.0(y), z) → g.0(f.1-0-0(x, y, z))
f.0-0-1(x, g.0(y), z) → g.0(f.0-0-1(x, y, z))
f.1-0-1(0., 1., x) → f.1-1-1(g.1(x), g.1(x), x)
f.1-1-1(x, g.1(y), z) → g.0(f.1-1-1(x, y, z))
f.0-0-0(g.0(x), y, z) → g.0(f.0-0-0(x, y, z))
f.1-0-0(x, y, g.0(z)) → g.0(f.1-0-0(x, y, z))
f.1-1-0(x, y, g.0(z)) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, y, g.1(z)) → g.0(f.1-0-1(x, y, z))
f.0-0-1(x, y, g.1(z)) → g.0(f.0-0-1(x, y, z))
f.1-1-1(g.1(x), y, z) → g.0(f.1-1-1(x, y, z))
f.1-1-1(x, y, g.1(z)) → g.0(f.1-1-1(x, y, z))
f.0-1-0(x, g.1(y), z) → g.0(f.0-1-0(x, y, z))
f.1-1-0(x, g.1(y), z) → g.0(f.1-1-0(x, y, z))
f.1-0-0(g.1(x), y, z) → g.0(f.1-0-0(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
F.0-0-0(x, g.0(y), z) → F.0-0-0(x, y, z)
F.0-0-0(g.0(x), y, z) → F.0-0-0(x, y, z)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(F.0-0-0(x1, x2, x3)) = x1 + x2 + x3
POL(g.0(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
Q DP problem:
The TRS P consists of the following rules:
F.1-0-0(x, g.0(y), z) → F.1-0-0(x, y, z)
F.1-0-0(g.1(x), y, z) → F.1-0-0(x, y, z)
The TRS R consists of the following rules:
f.0-1-1(x, y, g.1(z)) → g.0(f.0-1-1(x, y, z))
f.0-1-0(g.0(x), y, z) → g.0(f.0-1-0(x, y, z))
f.0-0-0(x, g.0(y), z) → g.0(f.0-0-0(x, y, z))
f.0-0-1(g.0(x), y, z) → g.0(f.0-0-1(x, y, z))
f.0-1-0(x, y, g.0(z)) → g.0(f.0-1-0(x, y, z))
f.1-0-1(g.1(x), y, z) → g.0(f.1-0-1(x, y, z))
f.0-1-1(x, g.1(y), z) → g.0(f.0-1-1(x, y, z))
f.1-1-0(g.1(x), y, z) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, g.0(y), z) → g.0(f.1-0-1(x, y, z))
f.0-0-0(x, y, g.0(z)) → g.0(f.0-0-0(x, y, z))
f.1-0-0(0., 1., x) → f.0-0-0(g.0(x), g.0(x), x)
f.0-1-1(g.0(x), y, z) → g.0(f.0-1-1(x, y, z))
f.1-0-0(x, g.0(y), z) → g.0(f.1-0-0(x, y, z))
f.0-0-1(x, g.0(y), z) → g.0(f.0-0-1(x, y, z))
f.1-0-1(0., 1., x) → f.1-1-1(g.1(x), g.1(x), x)
f.1-1-1(x, g.1(y), z) → g.0(f.1-1-1(x, y, z))
f.0-0-0(g.0(x), y, z) → g.0(f.0-0-0(x, y, z))
f.1-0-0(x, y, g.0(z)) → g.0(f.1-0-0(x, y, z))
f.1-1-0(x, y, g.0(z)) → g.0(f.1-1-0(x, y, z))
f.1-0-1(x, y, g.1(z)) → g.0(f.1-0-1(x, y, z))
f.0-0-1(x, y, g.1(z)) → g.0(f.0-0-1(x, y, z))
f.1-1-1(g.1(x), y, z) → g.0(f.1-1-1(x, y, z))
f.1-1-1(x, y, g.1(z)) → g.0(f.1-1-1(x, y, z))
f.0-1-0(x, g.1(y), z) → g.0(f.0-1-0(x, y, z))
f.1-1-0(x, g.1(y), z) → g.0(f.1-1-0(x, y, z))
f.1-0-0(g.1(x), y, z) → g.0(f.1-0-0(x, y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
F.1-0-0(x, g.0(y), z) → F.1-0-0(x, y, z)
F.1-0-0(g.1(x), y, z) → F.1-0-0(x, y, z)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(F.1-0-0(x1, x2, x3)) = x1 + x2 + x3
POL(g.0(x1)) = x1
POL(g.1(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.