Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
a(f, a(f, x)) → a(x, g)
a(x, g) → a(f, a(g, a(f, x)))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a(f, a(f, x)) → a(x, g)
a(x, g) → a(f, a(g, a(f, x)))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
A(x, g) → A(f, x)
A(x, g) → A(f, a(g, a(f, x)))
A(f, a(f, x)) → A(x, g)
A(x, g) → A(g, a(f, x))
The TRS R consists of the following rules:
a(f, a(f, x)) → a(x, g)
a(x, g) → a(f, a(g, a(f, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A(x, g) → A(f, x)
A(x, g) → A(f, a(g, a(f, x)))
A(f, a(f, x)) → A(x, g)
A(x, g) → A(g, a(f, x))
The TRS R consists of the following rules:
a(f, a(f, x)) → a(x, g)
a(x, g) → a(f, a(g, a(f, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
A(x, g) → A(f, x)
A(f, a(f, x)) → A(x, g)
A(x, g) → A(f, a(g, a(f, x)))
The TRS R consists of the following rules:
a(f, a(f, x)) → a(x, g)
a(x, g) → a(f, a(g, a(f, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A(x, g) → A(f, a(g, a(f, x))) at position [1] we obtained the following new rules:
A(g, g) → A(f, a(g, a(f, a(g, a(f, f)))))
A(a(f, x0), g) → A(f, a(g, a(x0, g)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A(a(f, x0), g) → A(f, a(g, a(x0, g)))
A(g, g) → A(f, a(g, a(f, a(g, a(f, f)))))
A(f, a(f, x)) → A(x, g)
A(x, g) → A(f, x)
The TRS R consists of the following rules:
a(f, a(f, x)) → a(x, g)
a(x, g) → a(f, a(g, a(f, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
Q DP problem:
The TRS P consists of the following rules:
A(a(f, x0), g) → A(f, a(g, a(x0, g)))
A(f, a(f, x)) → A(x, g)
A(x, g) → A(f, x)
The TRS R consists of the following rules:
a(f, a(f, x)) → a(x, g)
a(x, g) → a(f, a(g, a(f, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We found the following model for the rules of the TRS R.
Interpretation over the domain with elements from 0 to 1.f: 0
a: 0
g: 1
A: 0
By semantic labelling [33] we obtain the following labelled TRS:Q DP problem:
The TRS P consists of the following rules:
A.0-1(a.0-1(f., x0), g.) → A.0-0(f., a.1-0(g., a.1-1(x0, g.)))
A.0-0(f., a.0-1(f., x)) → A.1-1(x, g.)
A.0-0(f., a.0-0(f., x)) → A.0-1(x, g.)
A.0-1(x, g.) → A.0-0(f., x)
A.0-1(a.0-0(f., x0), g.) → A.0-0(f., a.1-0(g., a.0-1(x0, g.)))
A.1-1(x, g.) → A.0-1(f., x)
The TRS R consists of the following rules:
a.0-0(f., a.0-0(f., x)) → a.0-1(x, g.)
a.0-1(x, g.) → a.0-0(f., a.1-0(g., a.0-0(f., x)))
a.0-0(f., a.0-1(f., x)) → a.1-1(x, g.)
a.1-1(x, g.) → a.0-0(f., a.1-0(g., a.0-1(f., x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A.0-1(a.0-1(f., x0), g.) → A.0-0(f., a.1-0(g., a.1-1(x0, g.)))
A.0-0(f., a.0-1(f., x)) → A.1-1(x, g.)
A.0-0(f., a.0-0(f., x)) → A.0-1(x, g.)
A.0-1(x, g.) → A.0-0(f., x)
A.0-1(a.0-0(f., x0), g.) → A.0-0(f., a.1-0(g., a.0-1(x0, g.)))
A.1-1(x, g.) → A.0-1(f., x)
The TRS R consists of the following rules:
a.0-0(f., a.0-0(f., x)) → a.0-1(x, g.)
a.0-1(x, g.) → a.0-0(f., a.1-0(g., a.0-0(f., x)))
a.0-0(f., a.0-1(f., x)) → a.1-1(x, g.)
a.1-1(x, g.) → a.0-0(f., a.1-0(g., a.0-1(f., x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesReductionPairsProof
Q DP problem:
The TRS P consists of the following rules:
A.0-0(f., a.0-1(f., x)) → A.1-1(x, g.)
A.0-0(f., a.0-0(f., x)) → A.0-1(x, g.)
A.0-1(x, g.) → A.0-0(f., x)
A.1-1(x, g.) → A.0-1(f., x)
The TRS R consists of the following rules:
a.0-0(f., a.0-0(f., x)) → a.0-1(x, g.)
a.0-1(x, g.) → a.0-0(f., a.1-0(g., a.0-0(f., x)))
a.0-0(f., a.0-1(f., x)) → a.1-1(x, g.)
a.1-1(x, g.) → a.0-0(f., a.1-0(g., a.0-1(f., x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
A.0-0(f., a.0-1(f., x)) → A.1-1(x, g.)
A.0-0(f., a.0-0(f., x)) → A.0-1(x, g.)
A.0-1(x, g.) → A.0-0(f., x)
A.1-1(x, g.) → A.0-1(f., x)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(A.0-0(x1, x2)) = 1 + x1 + x2
POL(A.0-1(x1, x2)) = 1 + x1 + x2
POL(A.1-1(x1, x2)) = 1 + x1 + x2
POL(a.0-0(x1, x2)) = 1 + x1 + x2
POL(a.0-1(x1, x2)) = 1 + x1 + x2
POL(f.) = 0
POL(g.) = 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.