U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
U211(tt, M, N) → S(plus(activate(N), activate(M)))
PLUS(N, s(M)) → ISNAT(M)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ACTIVATE(n__s(X)) → S(X)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U111(isNat(N), N)
U211(tt, M, N) → PLUS(activate(N), activate(M))
U211(tt, M, N) → ACTIVATE(M)
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__0) → 01
U211(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__isNat(X)) → ISNAT(X)
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
PLUS(N, 0) → ISNAT(N)
U111(tt, N) → ACTIVATE(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
U211(tt, M, N) → S(plus(activate(N), activate(M)))
PLUS(N, s(M)) → ISNAT(M)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ACTIVATE(n__s(X)) → S(X)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U111(isNat(N), N)
U211(tt, M, N) → PLUS(activate(N), activate(M))
U211(tt, M, N) → ACTIVATE(M)
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__0) → 01
U211(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__isNat(X)) → ISNAT(X)
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
PLUS(N, 0) → ISNAT(N)
U111(tt, N) → ACTIVATE(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, s(M)) → ISNAT(M)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
PLUS(N, 0) → U111(isNat(N), N)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U211(tt, M, N) → ACTIVATE(M)
U211(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
U211(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__isNat(X)) → ISNAT(X)
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
U111(tt, N) → ACTIVATE(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
PLUS(N, 0) → ISNAT(N)
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
PLUS(N, 0) → U111(isNat(N), N)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
PLUS(N, 0) → ISNAT(N)
Used ordering: Polynomial interpretation [25]:
PLUS(N, s(M)) → ISNAT(M)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U211(tt, M, N) → ACTIVATE(M)
U211(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
U211(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__isNat(X)) → ISNAT(X)
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
U111(tt, N) → ACTIVATE(N)
POL(0) = 1
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(PLUS(x1, x2)) = x1 + x2
POL(U11(x1, x2)) = x2
POL(U111(x1, x2)) = x2
POL(U21(x1, x2, x3)) = 1 + x2 + x3
POL(U211(x1, x2, x3)) = x2 + x3
POL(activate(x1)) = x1
POL(and(x1, x2)) = x2
POL(isNat(x1)) = x1
POL(n__0) = 1
POL(n__isNat(x1)) = x1
POL(n__plus(x1, x2)) = 1 + x1 + x2
POL(n__s(x1)) = x1
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
activate(n__s(X)) → s(X)
activate(X) → X
U21(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(X) → n__isNat(X)
plus(X1, X2) → n__plus(X1, X2)
0 → n__0
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
activate(n__isNat(X)) → isNat(X)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U11(isNat(N), N)
U11(tt, N) → activate(N)
activate(n__0) → 0
s(X) → n__s(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
U211(tt, M, N) → ACTIVATE(N)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
PLUS(N, s(M)) → ISNAT(M)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
U111(tt, N) → ACTIVATE(N)
U211(tt, M, N) → PLUS(activate(N), activate(M))
U211(tt, M, N) → ACTIVATE(M)
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
Used ordering: Polynomial interpretation [25]:
ACTIVATE(n__isNat(X)) → ISNAT(X)
POL(0) = 0
POL(ACTIVATE(x1)) = 1 + x1
POL(ISNAT(x1)) = 1 + x1
POL(U11(x1, x2)) = x2
POL(U21(x1, x2, x3)) = 1 + x2 + x3
POL(activate(x1)) = x1
POL(and(x1, x2)) = x2
POL(isNat(x1)) = x1
POL(n__0) = 0
POL(n__isNat(x1)) = x1
POL(n__plus(x1, x2)) = x1 + x2
POL(n__s(x1)) = 1 + x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = 1 + x1
POL(tt) = 0
U21(tt, M, N) → s(plus(activate(N), activate(M)))
activate(n__s(X)) → s(X)
activate(X) → X
isNat(n__0) → tt
isNat(X) → n__isNat(X)
plus(X1, X2) → n__plus(X1, X2)
0 → n__0
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
activate(n__isNat(X)) → isNat(X)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U11(isNat(N), N)
U11(tt, N) → activate(N)
activate(n__0) → 0
s(X) → n__s(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
ACTIVATE(n__isNat(X)) → ISNAT(X)
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
U211(tt, M, N) → PLUS(activate(N), activate(M))
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
Used ordering: Polynomial interpretation [25]:
U211(tt, M, N) → PLUS(activate(N), activate(M))
POL(0) = 0
POL(PLUS(x1, x2)) = x2
POL(U11(x1, x2)) = x2
POL(U21(x1, x2, x3)) = 1 + x2 + x3
POL(U211(x1, x2, x3)) = x2
POL(activate(x1)) = x1
POL(and(x1, x2)) = x2
POL(isNat(x1)) = 0
POL(n__0) = 0
POL(n__isNat(x1)) = 0
POL(n__plus(x1, x2)) = x1 + x2
POL(n__s(x1)) = 1 + x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = 1 + x1
POL(tt) = 0
U21(tt, M, N) → s(plus(activate(N), activate(M)))
activate(n__s(X)) → s(X)
activate(X) → X
isNat(n__0) → tt
isNat(X) → n__isNat(X)
plus(X1, X2) → n__plus(X1, X2)
0 → n__0
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
activate(n__isNat(X)) → isNat(X)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U11(isNat(N), N)
U11(tt, N) → activate(N)
activate(n__0) → 0
s(X) → n__s(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
U211(tt, M, N) → PLUS(activate(N), activate(M))
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X