Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
U511(tt, V1, V2) → ACTIVATE(V2)
ISNELIST(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → ISQID(activate(I))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U221(tt, V2) → U231(isList(activate(V2)))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U611(tt, V) → ISQID(activate(V))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
ACTIVATE(n__o) → O
U611(tt, V) → U621(isQid(activate(V)))
U711(tt, V) → ISNEPAL(activate(V))
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
U611(tt, V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
__1(__(X, Y), Z) → __1(Y, Z)
U311(tt, V) → U321(isQid(activate(V)))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ACTIVATE(n__nil) → NIL
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPAL(V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
U211(tt, V1, V2) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__i) → I
ACTIVATE(n__e) → E
U421(tt, V2) → ACTIVATE(V2)
U521(tt, V2) → ACTIVATE(V2)
U211(tt, V1, V2) → ACTIVATE(V2)
ISPAL(V) → ISPALLISTKIND(activate(V))
U421(tt, V2) → U431(isNeList(activate(V2)))
ISLIST(V) → ISPALLISTKIND(activate(V))
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U311(tt, V) → ISQID(activate(V))
U111(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U221(tt, V2) → ISLIST(activate(V2))
U711(tt, V) → U721(isNePal(activate(V)))
__1(__(X, Y), Z) → __1(X, __(Y, Z))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
U511(tt, V1, V2) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
ISNEPAL(V) → ACTIVATE(V)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
U311(tt, V) → ACTIVATE(V)
U411(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → ISLIST(activate(V1))
ACTIVATE(n__a) → A
U111(tt, V) → U121(isNeList(activate(V)))
U411(tt, V1, V2) → ACTIVATE(V2)
U521(tt, V2) → U531(isList(activate(V2)))
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
U111(tt, V) → ACTIVATE(V)
U521(tt, V2) → ISLIST(activate(V2))
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__u) → U
ACTIVATE(n____(X1, X2)) → __1(activate(X1), activate(X2))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
U411(tt, V1, V2) → ACTIVATE(V1)
ISNELIST(V) → ISPALLISTKIND(activate(V))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
U221(tt, V2) → ACTIVATE(V2)
ISLIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNELIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
U711(tt, V) → ACTIVATE(V)
ISNELIST(V) → U311(isPalListKind(activate(V)), activate(V))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
ISLIST(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
U511(tt, V1, V2) → ACTIVATE(V2)
ISNELIST(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → ISQID(activate(I))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U221(tt, V2) → U231(isList(activate(V2)))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U611(tt, V) → ISQID(activate(V))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
ACTIVATE(n__o) → O
U611(tt, V) → U621(isQid(activate(V)))
U711(tt, V) → ISNEPAL(activate(V))
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
U611(tt, V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
__1(__(X, Y), Z) → __1(Y, Z)
U311(tt, V) → U321(isQid(activate(V)))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ACTIVATE(n__nil) → NIL
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPAL(V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
U211(tt, V1, V2) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__i) → I
ACTIVATE(n__e) → E
U421(tt, V2) → ACTIVATE(V2)
U521(tt, V2) → ACTIVATE(V2)
U211(tt, V1, V2) → ACTIVATE(V2)
ISPAL(V) → ISPALLISTKIND(activate(V))
U421(tt, V2) → U431(isNeList(activate(V2)))
ISLIST(V) → ISPALLISTKIND(activate(V))
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U311(tt, V) → ISQID(activate(V))
U111(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U221(tt, V2) → ISLIST(activate(V2))
U711(tt, V) → U721(isNePal(activate(V)))
__1(__(X, Y), Z) → __1(X, __(Y, Z))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
U511(tt, V1, V2) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
ISNEPAL(V) → ACTIVATE(V)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
U311(tt, V) → ACTIVATE(V)
U411(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → ISLIST(activate(V1))
ACTIVATE(n__a) → A
U111(tt, V) → U121(isNeList(activate(V)))
U411(tt, V1, V2) → ACTIVATE(V2)
U521(tt, V2) → U531(isList(activate(V2)))
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
U111(tt, V) → ACTIVATE(V)
U521(tt, V2) → ISLIST(activate(V2))
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__u) → U
ACTIVATE(n____(X1, X2)) → __1(activate(X1), activate(X2))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
U411(tt, V1, V2) → ACTIVATE(V1)
ISNELIST(V) → ISPALLISTKIND(activate(V))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
U221(tt, V2) → ACTIVATE(V2)
ISLIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNELIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
U711(tt, V) → ACTIVATE(V)
ISNELIST(V) → U311(isPalListKind(activate(V)), activate(V))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
ISLIST(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 41 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ACTIVATE(V)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNEPAL(V) → ACTIVATE(V)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
U711(tt, V) → ACTIVATE(V)
U711(tt, V) → ISNEPAL(activate(V))
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
ISPAL(V) → ISPALLISTKIND(activate(V))
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
The remaining pairs can at least be oriented weakly.

ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
ISNEPAL(V) → ACTIVATE(V)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
U711(tt, V) → ACTIVATE(V)
U711(tt, V) → ISNEPAL(activate(V))
ISPAL(V) → ISPALLISTKIND(activate(V))
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( i ) =
/0\
\0/

M( n__u ) =
/0\
\0/

M( __(x1, x2) ) =
/1\
\1/
+
/11\
\11/
·x1+
/10\
\01/
·x2

M( n__i ) =
/0\
\0/

M( activate(x1) ) =
/0\
\0/
+
/10\
\01/
·x1

M( n__nil ) =
/0\
\0/

M( and(x1, x2) ) =
/0\
\0/
+
/10\
\00/
·x1+
/10\
\01/
·x2

M( U71(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\01/
·x2

M( n__a ) =
/1\
\0/

M( tt ) =
/0\
\0/

M( isPalListKind(x1) ) =
/1\
\0/
+
/10\
\00/
·x1

M( U72(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( nil ) =
/0\
\0/

M( a ) =
/1\
\0/

M( n__isPal(x1) ) =
/0\
\0/
+
/11\
\01/
·x1

M( e ) =
/0\
\0/

M( n__e ) =
/0\
\0/

M( isNePal(x1) ) =
/0\
\0/
+
/11\
\11/
·x1

M( n____(x1, x2) ) =
/1\
\1/
+
/11\
\11/
·x1+
/10\
\01/
·x2

M( o ) =
/0\
\0/

M( isQid(x1) ) =
/0\
\0/
+
/10\
\10/
·x1

M( U62(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( n__and(x1, x2) ) =
/0\
\0/
+
/10\
\00/
·x1+
/10\
\01/
·x2

M( isPal(x1) ) =
/0\
\0/
+
/11\
\01/
·x1

M( n__o ) =
/0\
\0/

M( U61(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/01\
\01/
·x2

M( u ) =
/0\
\0/

M( n__isPalListKind(x1) ) =
/1\
\0/
+
/10\
\00/
·x1

Tuple symbols:
M( ISPAL(x1) ) = 0+
[1,1]
·x1

M( AND(x1, x2) ) = 0+
[0,0]
·x1+
[1,0]
·x2

M( ISPALLISTKIND(x1) ) = 0+
[1,0]
·x1

M( U611(x1, x2) ) = 0+
[0,0]
·x1+
[1,0]
·x2

M( U711(x1, x2) ) = 0+
[0,0]
·x1+
[1,1]
·x2

M( ACTIVATE(x1) ) = 0+
[1,0]
·x1

M( ISNEPAL(x1) ) = 0+
[1,1]
·x1


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

activate(n__nil) → nil
un__u
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
and(tt, X) → activate(X)
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
en__e
an__a
on__o
in__i
isPalListKind(X) → n__isPalListKind(X)
__(X1, X2) → n____(X1, X2)
isPal(X) → n__isPal(X)
and(X1, X2) → n__and(X1, X2)
isQid(n__o) → tt
isQid(n__i) → tt
niln__nil
isQid(n__u) → tt
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
U72(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U62(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isPalListKind(n__u) → tt
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
ISNEPAL(V) → ACTIVATE(V)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
U711(tt, V) → ACTIVATE(V)
U711(tt, V) → ISNEPAL(activate(V))
ISPAL(V) → ISPALLISTKIND(activate(V))
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ISPAL(V) → ACTIVATE(V)
ISNEPAL(V) → ACTIVATE(V)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
U711(tt, V) → ACTIVATE(V)
The remaining pairs can at least be oriented weakly.

ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__isPal(X)) → ISPAL(X)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNEPAL(V) → ISPALLISTKIND(activate(V))
U711(tt, V) → ISNEPAL(activate(V))
ISPAL(V) → ISPALLISTKIND(activate(V))
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
Used ordering: Polynomial interpretation [25]:

POL(ACTIVATE(x1)) = x1   
POL(AND(x1, x2)) = x2   
POL(ISNEPAL(x1)) = 1 + x1   
POL(ISPAL(x1)) = 1 + x1   
POL(ISPALLISTKIND(x1)) = 1 + x1   
POL(U61(x1, x2)) = 0   
POL(U611(x1, x2)) = x2   
POL(U62(x1)) = 0   
POL(U71(x1, x2)) = 1 + x2   
POL(U711(x1, x2)) = 1 + x2   
POL(U72(x1)) = 0   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 1   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 1   
POL(i) = 1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 1 + x1   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = x1   
POL(n____(x1, x2)) = 1 + x1 + x2   
POL(n__a) = 1   
POL(n__and(x1, x2)) = x1 + x2   
POL(n__e) = 1   
POL(n__i) = 1   
POL(n__isPal(x1)) = 1 + x1   
POL(n__isPalListKind(x1)) = 0   
POL(n__nil) = 0   
POL(n__o) = 1   
POL(n__u) = 0   
POL(nil) = 0   
POL(o) = 1   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [17] were oriented:

activate(n__nil) → nil
un__u
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
and(tt, X) → activate(X)
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
en__e
an__a
on__o
in__i
isPalListKind(X) → n__isPalListKind(X)
__(X1, X2) → n____(X1, X2)
isPal(X) → n__isPal(X)
and(X1, X2) → n__and(X1, X2)
isQid(n__o) → tt
isQid(n__i) → tt
niln__nil
isQid(n__u) → tt
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
U72(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U62(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isPalListKind(n__u) → tt
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ DependencyGraphProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U711(tt, V) → ISNEPAL(activate(V))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → ISPALLISTKIND(activate(V))
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNEPAL(V) → ISPALLISTKIND(activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 6 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP
                        ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

U221(tt, V2) → ISLIST(activate(V2))
U511(tt, V1, V2) → ISNELIST(activate(V1))
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U411(tt, V1, V2) → ISLIST(activate(V1))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U111(tt, V) → ISNELIST(activate(V))
U521(tt, V2) → ISLIST(activate(V2))
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U511(tt, V1, V2) → ISNELIST(activate(V1))
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U411(tt, V1, V2) → ISLIST(activate(V1))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
The remaining pairs can at least be oriented weakly.

U221(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U111(tt, V) → ISNELIST(activate(V))
U521(tt, V2) → ISLIST(activate(V2))
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x2)
tt  =  tt
ISLIST(x1)  =  ISLIST(x1)
activate(x1)  =  x1
U511(x1, x2, x3)  =  U511(x2, x3)
ISNELIST(x1)  =  ISNELIST(x1)
n____(x1, x2)  =  n____(x1, x2)
U411(x1, x2, x3)  =  U411(x2, x3)
and(x1, x2)  =  x2
isPalListKind(x1)  =  isPalListKind
n__isPalListKind(x1)  =  n__isPalListKind
U111(x1, x2)  =  U111(x2)
U521(x1, x2)  =  U521(x2)
isNeList(x1)  =  isNeList
U421(x1, x2)  =  U421(x1, x2)
isList(x1)  =  isList
U211(x1, x2, x3)  =  U211(x2, x3)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  U11
U12(x1)  =  U12
U21(x1, x2, x3)  =  U21
U22(x1, x2)  =  x1
U23(x1)  =  U23
U72(x1)  =  U72
U71(x1, x2)  =  U71(x1, x2)
isNePal(x1)  =  isNePal(x1)
U62(x1)  =  U62
U61(x1, x2)  =  U61
isQid(x1)  =  isQid
n__nil  =  n__nil
U42(x1, x2)  =  U42
U43(x1)  =  x1
U41(x1, x2, x3)  =  U41
U32(x1)  =  U32(x1)
U31(x1, x2)  =  U31(x1)
U53(x1)  =  x1
U52(x1, x2)  =  U52
U51(x1, x2, x3)  =  U51
n__o  =  n__o
n__e  =  n__e
n__i  =  n__i
n__a  =  n__a
n__u  =  n__u
isPal(x1)  =  isPal(x1)
n__and(x1, x2)  =  x2
n__isPal(x1)  =  n__isPal(x1)
u  =  u
e  =  e
a  =  a
o  =  o
i  =  i

Recursive path order with status [2].
Quasi-Precedence:
[n2, 2] > [U41^12, isList, U11, U21, U52] > [U22^11, tt, ISLIST1, U51^12, ISNELIST1, U11^11, U52^11, U42^12, U21^12, U12, U23, isQid] > U321
[isNeList, U42, U41] > [isPalListKind, nisPalListKind, isPal1, nisPal1] > [U72, U712] > [U22^11, tt, ISLIST1, U51^12, ISNELIST1, U11^11, U52^11, U42^12, U21^12, U12, U23, isQid] > U321
[isNeList, U42, U41] > U311 > U321
[isNeList, U42, U41] > U51 > [U41^12, isList, U11, U21, U52] > [U22^11, tt, ISLIST1, U51^12, ISNELIST1, U11^11, U52^11, U42^12, U21^12, U12, U23, isQid] > U321
[nil, nnil]
isNePal1 > [isPalListKind, nisPalListKind, isPal1, nisPal1] > [U72, U712] > [U22^11, tt, ISLIST1, U51^12, ISNELIST1, U11^11, U52^11, U42^12, U21^12, U12, U23, isQid] > U321
isNePal1 > [U62, U61] > [U22^11, tt, ISLIST1, U51^12, ISNELIST1, U11^11, U52^11, U42^12, U21^12, U12, U23, isQid] > U321
[no, o]
[ne, e]
[ni, i] > [U22^11, tt, ISLIST1, U51^12, ISNELIST1, U11^11, U52^11, U42^12, U21^12, U12, U23, isQid] > U321
[na, a]
[nu, u] > [U22^11, tt, ISLIST1, U51^12, ISNELIST1, U11^11, U52^11, U42^12, U21^12, U12, U23, isQid] > U321

Status:
i: multiset
U51^12: multiset
U11^11: multiset
_2: [1,2]
nu: multiset
isPalListKind: []
isNeList: []
U42: []
ni: multiset
U21^12: multiset
U11: []
nnil: multiset
U712: multiset
na: multiset
isList: []
U61: []
tt: multiset
U22^11: multiset
U72: multiset
U41: []
U23: multiset
isQid: multiset
nil: multiset
U21: []
U51: multiset
a: multiset
ISNELIST1: multiset
U62: []
nisPal1: [1]
e: multiset
U52: []
U12: multiset
ne: multiset
isNePal1: [1]
n2: [1,2]
o: multiset
U52^11: multiset
isPal1: [1]
no: multiset
U41^12: [2,1]
U42^12: multiset
U311: multiset
nisPalListKind: []
u: multiset
U321: [1]
ISLIST1: multiset


The following usable rules [17] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U72(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U62(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isList(n__nil) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
U42(tt, V2) → U43(isNeList(activate(V2)))
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U32(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U53(tt) → tt
U52(tt, V2) → U53(isList(activate(V2)))
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U43(tt) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isPalListKind(n__u) → tt
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
activate(n__nil) → nil
un__u
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
and(tt, X) → activate(X)
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
en__e
an__a
on__o
in__i
isPalListKind(X) → n__isPalListKind(X)
__(X1, X2) → n____(X1, X2)
isPal(X) → n__isPal(X)
and(X1, X2) → n__and(X1, X2)
isQid(n__o) → tt
isQid(n__i) → tt
niln__nil
isQid(n__u) → tt
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U221(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U111(tt, V) → ISNELIST(activate(V))
U521(tt, V2) → ISLIST(activate(V2))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 4 less nodes.