Termination w.r.t. Q of the following Term Rewriting System could be disproven:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
U921(tt, IL, M, N) → ISNAT(activate(N))
U721(tt, L) → LENGTH(activate(L))
ISNATLIST(n__take(V1, V2)) → U611(isNat(activate(V1)), activate(V2))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U931(tt, IL, M, N) → ACTIVATE(M)
ISNATILIST(V) → U311(isNatList(activate(V)))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
U911(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__0) → 01
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
U611(tt, V2) → ACTIVATE(V2)
TAKE(s(M), cons(N, IL)) → U911(isNatIList(activate(IL)), activate(IL), M, N)
U721(tt, L) → ACTIVATE(L)
ISNAT(n__length(V1)) → U111(isNatList(activate(V1)))
ACTIVATE(n__zeros) → ZEROS
LENGTH(nil) → 01
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U811(tt) → NIL
U411(tt, V2) → ACTIVATE(V2)
U711(tt, L, N) → ACTIVATE(L)
U921(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__length(X)) → LENGTH(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__nil) → NIL
TAKE(0, IL) → ISNATILIST(IL)
ACTIVATE(n__s(X)) → S(X)
U921(tt, IL, M, N) → ACTIVATE(M)
U931(tt, IL, M, N) → ACTIVATE(IL)
ISNAT(n__s(V1)) → ACTIVATE(V1)
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
U711(tt, L, N) → ACTIVATE(N)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U711(tt, L, N) → ISNAT(activate(N))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U931(tt, IL, M, N) → CONS(activate(N), n__take(activate(M), activate(IL)))
U511(tt, V2) → ISNATLIST(activate(V2))
U511(tt, V2) → U521(isNatList(activate(V2)))
U921(tt, IL, M, N) → ACTIVATE(N)
U511(tt, V2) → ACTIVATE(V2)
TAKE(0, IL) → U811(isNatIList(IL))
U411(tt, V2) → ISNATILIST(activate(V2))
U931(tt, IL, M, N) → ACTIVATE(N)
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
U911(tt, IL, M, N) → ACTIVATE(M)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
U411(tt, V2) → U421(isNatIList(activate(V2)))
U911(tt, IL, M, N) → U921(isNat(activate(M)), activate(IL), activate(M), activate(N))
LENGTH(cons(N, L)) → ACTIVATE(L)
U921(tt, IL, M, N) → U931(isNat(activate(N)), activate(IL), activate(M), activate(N))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
U611(tt, V2) → ISNATILIST(activate(V2))
U911(tt, IL, M, N) → ISNAT(activate(M))
U721(tt, L) → S(length(activate(L)))
ZEROS → CONS(0, n__zeros)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
U911(tt, IL, M, N) → ACTIVATE(IL)
ZEROS → 01
U611(tt, V2) → U621(isNatIList(activate(V2)))
ISNAT(n__length(V1)) → ACTIVATE(V1)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
U921(tt, IL, M, N) → ISNAT(activate(N))
U721(tt, L) → LENGTH(activate(L))
ISNATLIST(n__take(V1, V2)) → U611(isNat(activate(V1)), activate(V2))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U931(tt, IL, M, N) → ACTIVATE(M)
ISNATILIST(V) → U311(isNatList(activate(V)))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
U911(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__0) → 01
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
U611(tt, V2) → ACTIVATE(V2)
TAKE(s(M), cons(N, IL)) → U911(isNatIList(activate(IL)), activate(IL), M, N)
U721(tt, L) → ACTIVATE(L)
ISNAT(n__length(V1)) → U111(isNatList(activate(V1)))
ACTIVATE(n__zeros) → ZEROS
LENGTH(nil) → 01
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U811(tt) → NIL
U411(tt, V2) → ACTIVATE(V2)
U711(tt, L, N) → ACTIVATE(L)
U921(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__length(X)) → LENGTH(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__nil) → NIL
TAKE(0, IL) → ISNATILIST(IL)
ACTIVATE(n__s(X)) → S(X)
U921(tt, IL, M, N) → ACTIVATE(M)
U931(tt, IL, M, N) → ACTIVATE(IL)
ISNAT(n__s(V1)) → ACTIVATE(V1)
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
U711(tt, L, N) → ACTIVATE(N)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U711(tt, L, N) → ISNAT(activate(N))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U931(tt, IL, M, N) → CONS(activate(N), n__take(activate(M), activate(IL)))
U511(tt, V2) → ISNATLIST(activate(V2))
U511(tt, V2) → U521(isNatList(activate(V2)))
U921(tt, IL, M, N) → ACTIVATE(N)
U511(tt, V2) → ACTIVATE(V2)
TAKE(0, IL) → U811(isNatIList(IL))
U411(tt, V2) → ISNATILIST(activate(V2))
U931(tt, IL, M, N) → ACTIVATE(N)
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
U911(tt, IL, M, N) → ACTIVATE(M)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
U411(tt, V2) → U421(isNatIList(activate(V2)))
U911(tt, IL, M, N) → U921(isNat(activate(M)), activate(IL), activate(M), activate(N))
LENGTH(cons(N, L)) → ACTIVATE(L)
U921(tt, IL, M, N) → U931(isNat(activate(N)), activate(IL), activate(M), activate(N))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
U611(tt, V2) → ISNATILIST(activate(V2))
U911(tt, IL, M, N) → ISNAT(activate(M))
U721(tt, L) → S(length(activate(L)))
ZEROS → CONS(0, n__zeros)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
U911(tt, IL, M, N) → ACTIVATE(IL)
ZEROS → 01
U611(tt, V2) → U621(isNatIList(activate(V2)))
ISNAT(n__length(V1)) → ACTIVATE(V1)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 18 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
U921(tt, IL, M, N) → ISNAT(activate(N))
U721(tt, L) → LENGTH(activate(L))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__take(V1, V2)) → U611(isNat(activate(V1)), activate(V2))
U931(tt, IL, M, N) → ACTIVATE(M)
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
U911(tt, IL, M, N) → ACTIVATE(N)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
U611(tt, V2) → ACTIVATE(V2)
TAKE(s(M), cons(N, IL)) → U911(isNatIList(activate(IL)), activate(IL), M, N)
U721(tt, L) → ACTIVATE(L)
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U411(tt, V2) → ACTIVATE(V2)
U711(tt, L, N) → ACTIVATE(L)
U921(tt, IL, M, N) → ACTIVATE(IL)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → LENGTH(X)
TAKE(0, IL) → ISNATILIST(IL)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U931(tt, IL, M, N) → ACTIVATE(IL)
U921(tt, IL, M, N) → ACTIVATE(M)
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
U711(tt, L, N) → ACTIVATE(N)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U711(tt, L, N) → ISNAT(activate(N))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U511(tt, V2) → ISNATLIST(activate(V2))
U921(tt, IL, M, N) → ACTIVATE(N)
U511(tt, V2) → ACTIVATE(V2)
U411(tt, V2) → ISNATILIST(activate(V2))
U931(tt, IL, M, N) → ACTIVATE(N)
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
U911(tt, IL, M, N) → ACTIVATE(M)
U911(tt, IL, M, N) → U921(isNat(activate(M)), activate(IL), activate(M), activate(N))
LENGTH(cons(N, L)) → ACTIVATE(L)
U921(tt, IL, M, N) → U931(isNat(activate(N)), activate(IL), activate(M), activate(N))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
U611(tt, V2) → ISNATILIST(activate(V2))
U911(tt, IL, M, N) → ISNAT(activate(M))
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
U911(tt, IL, M, N) → ACTIVATE(IL)
ISNAT(n__length(V1)) → ACTIVATE(V1)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__take(V1, V2)) → U611(isNat(activate(V1)), activate(V2))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
U921(tt, IL, M, N) → ISNAT(activate(N))
U721(tt, L) → LENGTH(activate(L))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U931(tt, IL, M, N) → ACTIVATE(M)
U911(tt, IL, M, N) → ACTIVATE(N)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
U611(tt, V2) → ACTIVATE(V2)
TAKE(s(M), cons(N, IL)) → U911(isNatIList(activate(IL)), activate(IL), M, N)
U721(tt, L) → ACTIVATE(L)
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U411(tt, V2) → ACTIVATE(V2)
U711(tt, L, N) → ACTIVATE(L)
U921(tt, IL, M, N) → ACTIVATE(IL)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → LENGTH(X)
TAKE(0, IL) → ISNATILIST(IL)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U931(tt, IL, M, N) → ACTIVATE(IL)
U921(tt, IL, M, N) → ACTIVATE(M)
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
U711(tt, L, N) → ACTIVATE(N)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U711(tt, L, N) → ISNAT(activate(N))
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U511(tt, V2) → ISNATLIST(activate(V2))
U921(tt, IL, M, N) → ACTIVATE(N)
U511(tt, V2) → ACTIVATE(V2)
U411(tt, V2) → ISNATILIST(activate(V2))
U931(tt, IL, M, N) → ACTIVATE(N)
U911(tt, IL, M, N) → ACTIVATE(M)
U911(tt, IL, M, N) → U921(isNat(activate(M)), activate(IL), activate(M), activate(N))
LENGTH(cons(N, L)) → ACTIVATE(L)
U921(tt, IL, M, N) → U931(isNat(activate(N)), activate(IL), activate(M), activate(N))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
U611(tt, V2) → ISNATILIST(activate(V2))
U911(tt, IL, M, N) → ISNAT(activate(M))
U911(tt, IL, M, N) → ACTIVATE(IL)
ISNAT(n__length(V1)) → ACTIVATE(V1)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(LENGTH(x1)) = x1
POL(TAKE(x1, x2)) = x1 + x2
POL(U11(x1)) = 0
POL(U21(x1)) = 0
POL(U31(x1)) = 0
POL(U41(x1, x2)) = 0
POL(U411(x1, x2)) = x2
POL(U42(x1)) = 0
POL(U51(x1, x2)) = 0
POL(U511(x1, x2)) = x2
POL(U52(x1)) = 0
POL(U61(x1, x2)) = 0
POL(U611(x1, x2)) = x2
POL(U62(x1)) = 0
POL(U71(x1, x2, x3)) = x2 + x3
POL(U711(x1, x2, x3)) = x2 + x3
POL(U72(x1, x2)) = x2
POL(U721(x1, x2)) = x2
POL(U81(x1)) = 0
POL(U91(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(U911(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U92(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(U921(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U93(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(U931(x1, x2, x3, x4)) = x2 + x3 + x4
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + x2
POL(n__length(x1)) = x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = 1 + x1 + x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
U31(tt) → tt
U21(tt) → tt
U42(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U62(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U11(tt) → tt
zeros → cons(0, n__zeros)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zeros) → zeros
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__s(X)) → s(X)
activate(n__length(X)) → length(X)
activate(n__0) → 0
zeros → n__zeros
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(0, IL) → U81(isNatIList(IL))
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
length(X) → n__length(X)
0 → n__0
take(X1, X2) → n__take(X1, X2)
activate(n__nil) → nil
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
U511(tt, V2) → ISNATLIST(activate(V2))
U921(tt, IL, M, N) → ISNAT(activate(N))
U921(tt, IL, M, N) → ACTIVATE(N)
U721(tt, L) → LENGTH(activate(L))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
U931(tt, IL, M, N) → ACTIVATE(M)
U911(tt, IL, M, N) → ACTIVATE(N)
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
U931(tt, IL, M, N) → ACTIVATE(N)
U411(tt, V2) → ISNATILIST(activate(V2))
U911(tt, IL, M, N) → ACTIVATE(M)
U611(tt, V2) → ACTIVATE(V2)
TAKE(s(M), cons(N, IL)) → U911(isNatIList(activate(IL)), activate(IL), M, N)
U721(tt, L) → ACTIVATE(L)
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U411(tt, V2) → ACTIVATE(V2)
U911(tt, IL, M, N) → U921(isNat(activate(M)), activate(IL), activate(M), activate(N))
U711(tt, L, N) → ACTIVATE(L)
U921(tt, IL, M, N) → ACTIVATE(IL)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → LENGTH(X)
U921(tt, IL, M, N) → U931(isNat(activate(N)), activate(IL), activate(M), activate(N))
LENGTH(cons(N, L)) → ACTIVATE(L)
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
TAKE(0, IL) → ISNATILIST(IL)
ISNAT(n__s(V1)) → ACTIVATE(V1)
U931(tt, IL, M, N) → ACTIVATE(IL)
U921(tt, IL, M, N) → ACTIVATE(M)
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
U711(tt, L, N) → ACTIVATE(N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, V2) → ISNATILIST(activate(V2))
U911(tt, IL, M, N) → ISNAT(activate(M))
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
U911(tt, IL, M, N) → ACTIVATE(IL)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ISNAT(n__length(V1)) → ACTIVATE(V1)
U711(tt, L, N) → ISNAT(activate(N))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 25 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U711(tt, L, N) → ACTIVATE(L)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(N, L)) → ACTIVATE(L)
U511(tt, V2) → ISNATLIST(activate(V2))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U721(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
U711(tt, L, N) → ACTIVATE(N)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U721(tt, L) → ACTIVATE(L)
ISNAT(n__length(V1)) → ACTIVATE(V1)
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U711(tt, L, N) → ISNAT(activate(N))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ACTIVATE(n__length(X)) → LENGTH(X)
ISNAT(n__length(V1)) → ACTIVATE(V1)
The remaining pairs can at least be oriented weakly.
U711(tt, L, N) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
U511(tt, V2) → ISNATLIST(activate(V2))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U721(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
U711(tt, L, N) → ACTIVATE(N)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U721(tt, L) → ACTIVATE(L)
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U711(tt, L, N) → ISNAT(activate(N))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(ISNAT(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(LENGTH(x1)) = x1
POL(U11(x1)) = 0
POL(U21(x1)) = 0
POL(U31(x1)) = 0
POL(U41(x1, x2)) = 0
POL(U42(x1)) = 0
POL(U51(x1, x2)) = 0
POL(U511(x1, x2)) = x2
POL(U52(x1)) = 0
POL(U61(x1, x2)) = 0
POL(U62(x1)) = 0
POL(U71(x1, x2, x3)) = 1 + x2 + x3
POL(U711(x1, x2, x3)) = x2 + x3
POL(U72(x1, x2)) = 1 + x2
POL(U721(x1, x2)) = x2
POL(U81(x1)) = 0
POL(U91(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U92(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U93(x1, x2, x3, x4)) = x2 + x3 + x4
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + x2
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
U31(tt) → tt
U21(tt) → tt
U42(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U62(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U11(tt) → tt
zeros → cons(0, n__zeros)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zeros) → zeros
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__s(X)) → s(X)
activate(n__length(X)) → length(X)
activate(n__0) → 0
zeros → n__zeros
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(0, IL) → U81(isNatIList(IL))
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
length(X) → n__length(X)
0 → n__0
take(X1, X2) → n__take(X1, X2)
activate(n__nil) → nil
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U711(tt, L, N) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
U511(tt, V2) → ISNATLIST(activate(V2))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U721(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
U711(tt, L, N) → ACTIVATE(N)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U721(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
U711(tt, L, N) → ISNAT(activate(N))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 11 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U92(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U51(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( U91(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( n__length(x1) ) = | | + | | · | x1 |
M( U93(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( U72(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U61(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U41(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U71(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
U31(tt) → tt
U21(tt) → tt
U42(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U62(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U11(tt) → tt
zeros → cons(0, n__zeros)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zeros) → zeros
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__s(X)) → s(X)
activate(n__length(X)) → length(X)
activate(n__0) → 0
zeros → n__zeros
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(0, IL) → U81(isNatIList(IL))
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
length(X) → n__length(X)
0 → n__0
take(X1, X2) → n__take(X1, X2)
activate(n__nil) → nil
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, V2) → ISNATLIST(activate(V2)) at position [0] we obtained the following new rules:
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__cons(x0, x1), y2)) → U511(isNat(n__cons(x0, x1)), activate(y2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__zeros) → ISNATLIST(zeros)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__cons(x0, x1), y2)) → U511(isNat(n__cons(x0, x1)), activate(y2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__nil) → ISNATLIST(nil) at position [0] we obtained the following new rules:
U511(tt, n__nil) → ISNATLIST(n__nil)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__nil) → ISNATLIST(n__nil)
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__s(x0)) → ISNATLIST(s(x0)) at position [0] we obtained the following new rules:
U511(tt, n__s(x0)) → ISNATLIST(n__s(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__s(x0)) → ISNATLIST(n__s(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__zeros) → ISNATLIST(zeros) at position [0] we obtained the following new rules:
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__zeros)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__zeros) → ISNATLIST(n__zeros)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__0) → ISNATLIST(0) at position [0] we obtained the following new rules:
U511(tt, n__0) → ISNATLIST(n__0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__0) → ISNATLIST(n__0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1)) at position [0] we obtained the following new rules:
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros)) at position [0] we obtained the following new rules:
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros)) at position [0] we obtained the following new rules:
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0)) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
The remaining pairs can at least be oriented weakly.
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ISNATLIST(x1)) = x1
POL(U11(x1)) = 0
POL(U21(x1)) = 0
POL(U31(x1)) = 0
POL(U41(x1, x2)) = 0
POL(U42(x1)) = 0
POL(U51(x1, x2)) = 0
POL(U511(x1, x2)) = x2
POL(U52(x1)) = 0
POL(U61(x1, x2)) = 0
POL(U62(x1)) = 0
POL(U71(x1, x2, x3)) = 1 + x2 + x3
POL(U72(x1, x2)) = 1 + x2
POL(U81(x1)) = 0
POL(U91(x1, x2, x3, x4)) = x2 + x4
POL(U92(x1, x2, x3, x4)) = x2 + x4
POL(U93(x1, x2, x3, x4)) = x2 + x4
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + x2
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 0
POL(n__s(x1)) = 0
POL(n__take(x1, x2)) = x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
U31(tt) → tt
U21(tt) → tt
U42(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U62(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U11(tt) → tt
zeros → cons(0, n__zeros)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zeros) → zeros
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__s(X)) → s(X)
activate(n__length(X)) → length(X)
activate(n__0) → 0
zeros → n__zeros
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(0, IL) → U81(isNatIList(IL))
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
length(X) → n__length(X)
0 → n__0
take(X1, X2) → n__take(X1, X2)
activate(n__nil) → nil
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The remaining pairs can at least be oriented weakly.
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ISNATLIST(x1)) = x1
POL(U11(x1)) = 0
POL(U21(x1)) = 0
POL(U31(x1)) = 0
POL(U41(x1, x2)) = 0
POL(U42(x1)) = 0
POL(U51(x1, x2)) = x2
POL(U511(x1, x2)) = x2
POL(U52(x1)) = x1
POL(U61(x1, x2)) = x2
POL(U62(x1)) = 0
POL(U71(x1, x2, x3)) = 1
POL(U72(x1, x2)) = 1
POL(U81(x1)) = 0
POL(U91(x1, x2, x3, x4)) = x2 + x4
POL(U92(x1, x2, x3, x4)) = x2 + x4
POL(U93(x1, x2, x3, x4)) = x2 + x4
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + x2
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 0
POL(n__s(x1)) = 1
POL(n__take(x1, x2)) = x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = 1
POL(take(x1, x2)) = x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
U31(tt) → tt
U21(tt) → tt
U42(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U62(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U11(tt) → tt
zeros → cons(0, n__zeros)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zeros) → zeros
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__s(X)) → s(X)
activate(n__length(X)) → length(X)
activate(n__0) → 0
zeros → n__zeros
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(0, IL) → U81(isNatIList(IL))
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
length(X) → n__length(X)
0 → n__0
take(X1, X2) → n__take(X1, X2)
activate(n__nil) → nil
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__take(x0, x1), y1)) → U511(isNat(take(x0, x1)), activate(y1))
The remaining pairs can at least be oriented weakly.
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ISNATLIST(x1)) = x1
POL(U11(x1)) = 0
POL(U21(x1)) = 0
POL(U31(x1)) = 0
POL(U41(x1, x2)) = 0
POL(U42(x1)) = 0
POL(U51(x1, x2)) = 1 + x2
POL(U511(x1, x2)) = x2
POL(U52(x1)) = 0
POL(U61(x1, x2)) = 1
POL(U62(x1)) = 0
POL(U71(x1, x2, x3)) = 0
POL(U72(x1, x2)) = 0
POL(U81(x1)) = 1
POL(U91(x1, x2, x3, x4)) = 1 + x2 + x4
POL(U92(x1, x2, x3, x4)) = 1 + x2 + x4
POL(U93(x1, x2, x3, x4)) = 1 + x2 + x4
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 1
POL(isNatList(x1)) = 1 + x1
POL(length(x1)) = 0
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + x2
POL(n__length(x1)) = 0
POL(n__nil) = 0
POL(n__s(x1)) = 0
POL(n__take(x1, x2)) = 1 + x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = 1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
U31(tt) → tt
U21(tt) → tt
U42(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U62(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U11(tt) → tt
zeros → cons(0, n__zeros)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zeros) → zeros
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__s(X)) → s(X)
activate(n__length(X)) → length(X)
activate(n__0) → 0
zeros → n__zeros
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(0, IL) → U81(isNatIList(IL))
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
length(X) → n__length(X)
0 → n__0
take(X1, X2) → n__take(X1, X2)
activate(n__nil) → nil
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
The remaining pairs can at least be oriented weakly.
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
Used ordering: Polynomial interpretation [25,35]:
POL(U511(x1, x2)) = (4)x_1 + (4)x_2
POL(U81(x1)) = 0
POL(U92(x1, x2, x3, x4)) = 0
POL(activate(x1)) = (2)x_1
POL(n__s(x1)) = 0
POL(n__nil) = 0
POL(take(x1, x2)) = 0
POL(U51(x1, x2)) = (2)x_2
POL(ISNATLIST(x1)) = (2)x_1
POL(tt) = 0
POL(isNatList(x1)) = x_1
POL(zeros) = 0
POL(U52(x1)) = 0
POL(isNatIList(x1)) = x_1
POL(s(x1)) = 0
POL(U11(x1)) = 0
POL(isNat(x1)) = 0
POL(nil) = 0
POL(U91(x1, x2, x3, x4)) = 0
POL(n__length(x1)) = 1
POL(U93(x1, x2, x3, x4)) = 0
POL(n__zeros) = 0
POL(U72(x1, x2)) = 0
POL(n__cons(x1, x2)) = (4)x_2
POL(0) = 0
POL(U62(x1)) = 0
POL(cons(x1, x2)) = (4)x_2
POL(U61(x1, x2)) = 0
POL(U31(x1)) = 0
POL(U41(x1, x2)) = x_1 + x_2
POL(U42(x1)) = 0
POL(n__0) = 0
POL(n__take(x1, x2)) = 0
POL(length(x1)) = 1
POL(U21(x1)) = 0
POL(U71(x1, x2, x3)) = 1
The value of delta used in the strict ordering is 2.
The following usable rules [17] were oriented:
U31(tt) → tt
U21(tt) → tt
U42(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U62(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U11(tt) → tt
zeros → cons(0, n__zeros)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zeros) → zeros
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__s(X)) → s(X)
activate(n__length(X)) → length(X)
activate(n__0) → 0
zeros → n__zeros
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(0, IL) → U81(isNatIList(IL))
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
length(X) → n__length(X)
0 → n__0
take(X1, X2) → n__take(X1, X2)
activate(n__nil) → nil
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
U511(tt, n__take(x0, x1)) → ISNATLIST(take(x0, x1))
The remaining pairs can at least be oriented weakly.
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U92(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U51(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( U91(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( n__length(x1) ) = | | + | | · | x1 |
M( U93(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( U72(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U61(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U41(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U71(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( U511(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
U31(tt) → tt
U21(tt) → tt
U42(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U62(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U11(tt) → tt
zeros → cons(0, n__zeros)
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zeros) → zeros
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__s(X)) → s(X)
activate(n__length(X)) → length(X)
activate(n__0) → 0
zeros → n__zeros
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
take(0, IL) → U81(isNatIList(IL))
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
s(X) → n__s(X)
length(X) → n__length(X)
0 → n__0
take(X1, X2) → n__take(X1, X2)
activate(n__nil) → nil
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ NonTerminationProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
U511(tt, x0) → ISNATLIST(x0)
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
s = U511(isNat(n__0), activate(n__zeros)) evaluates to t =U511(isNat(n__0), activate(n__zeros))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
U511(isNat(n__0), activate(n__zeros)) → U511(isNat(n__0), n__zeros)
with rule activate(X) → X at position [1] and matcher [X / n__zeros]
U511(isNat(n__0), n__zeros) → U511(tt, n__zeros)
with rule isNat(n__0) → tt at position [0] and matcher [ ]
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
with rule U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros)) at position [] and matcher [ ]
ISNATLIST(n__cons(n__0, n__zeros)) → U511(isNat(n__0), activate(n__zeros))
with rule ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(N, L)) → U711(isNatList(activate(L)), activate(L), N)
U721(tt, L) → LENGTH(activate(L))
U711(tt, L, N) → U721(isNat(activate(N)), activate(L))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U411(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, V2) → U62(isNatIList(activate(V2)))
U62(tt) → tt
U71(tt, L, N) → U72(isNat(activate(N)), activate(L))
U72(tt, L) → s(length(activate(L)))
U81(tt) → nil
U91(tt, IL, M, N) → U92(isNat(activate(M)), activate(IL), activate(M), activate(N))
U92(tt, IL, M, N) → U93(isNat(activate(N)), activate(IL), activate(M), activate(N))
U93(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__take(V1, V2)) → U61(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U71(isNatList(activate(L)), activate(L), N)
take(0, IL) → U81(isNatIList(IL))
take(s(M), cons(N, IL)) → U91(isNatIList(activate(IL)), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.