Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeroszeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeroszeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(length(X)) → MARK(X)
MARK(zeros) → A__ZEROS
MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → MARK(L)
A__AND(tt, X) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeroszeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(length(X)) → MARK(X)
MARK(zeros) → A__ZEROS
MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → MARK(L)
A__AND(tt, X) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeroszeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(length(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
A__LENGTH(cons(N, L)) → A__LENGTH(mark(L))
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → MARK(L)
A__AND(tt, X) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeroszeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(length(X)) → MARK(X)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → MARK(L)
A__AND(tt, X) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
A__LENGTH(cons(N, L)) → A__LENGTH(mark(L))
Used ordering: Polynomial interpretation [25,35]:

POL(A__LENGTH(x1)) = 1 + x_1   
POL(a__and(x1, x2)) = (2)x_1 + x_2   
POL(a__zeros) = 0   
POL(mark(x1)) = x_1   
POL(and(x1, x2)) = (2)x_1 + x_2   
POL(0) = 0   
POL(A__AND(x1, x2)) = (4)x_1 + (2)x_2   
POL(cons(x1, x2)) = (2)x_1 + (4)x_2   
POL(MARK(x1)) = (2)x_1   
POL(a__length(x1)) = 1 + x_1   
POL(tt) = 1   
POL(zeros) = 0   
POL(s(x1)) = x_1   
POL(length(x1)) = 1 + x_1   
POL(nil) = 3   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented:

a__zeroscons(0, zeros)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
mark(zeros) → a__zeros
mark(length(X)) → a__length(mark(X))
a__and(tt, X) → mark(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(nil) → nil
mark(tt) → tt
a__zeroszeros
mark(s(X)) → s(mark(X))
a__length(X) → length(X)
a__and(X1, X2) → and(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
A__LENGTH(cons(N, L)) → A__LENGTH(mark(L))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeroszeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH(cons(N, L)) → A__LENGTH(mark(L))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeroszeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeroszeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(cons(x1, x2)) = 4 + (3)x_1   
POL(MARK(x1)) = (4)x_1   
POL(s(x1)) = 4 + (4)x_1   
POL(and(x1, x2)) = 4 + (4)x_1   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeroszeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.