Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(isNatList(nil)) → mark(tt)
active(length(nil)) → mark(0)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1)) = x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = x1   
POL(U41(x1, x2)) = x1 + 2·x2   
POL(U42(x1)) = 2·x1   
POL(U51(x1, x2)) = x1 + x2   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3   
POL(U62(x1, x2)) = x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 1   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(U11(tt)) → mark(tt)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1)) = 1 + 2·x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = x1   
POL(U41(x1, x2)) = x1 + x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = x1 + 2·x2   
POL(U52(x1)) = 2·x1   
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3   
POL(U62(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 1 + 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1)) = x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = x1   
POL(U41(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = x1 + 2·x2   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = x1 + 2·x2 + 2·x3   
POL(U62(x1, x2)) = 2·x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 2 + 2·x1   
POL(isNatList(x1)) = 2·x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(U31(tt)) → mark(tt)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1)) = x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = 1 + 2·x1   
POL(U41(x1, x2)) = 2·x1 + 2·x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = x1 + 2·x2   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = x1 + 2·x2 + 2·x3   
POL(U62(x1, x2)) = 2·x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = 2·x1   
POL(isNatList(x1)) = 2·x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 2   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(isNat(length(V1))) → mark(U11(isNatList(V1)))
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1)) = 1 + x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = 2·x1   
POL(U41(x1, x2)) = x1 + 2·x2   
POL(U42(x1)) = 2·x1   
POL(U51(x1, x2)) = x1 + 2·x2   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = 2 + x1 + x2 + 2·x3   
POL(U62(x1, x2)) = 2 + x1 + x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 2 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(top(x1)) = 2·x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
QTRS
                      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(tt, V2)) → U421(isNatIList(V2))
PROPER(U51(X1, X2)) → PROPER(X2)
ACTIVE(U51(tt, V2)) → U521(isNatList(V2))
ACTIVE(U31(X)) → U311(active(X))
PROPER(U42(X)) → U421(proper(X))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
PROPER(U62(X1, X2)) → PROPER(X2)
ACTIVE(U61(tt, L, N)) → U621(isNat(N), L)
PROPER(isNatList(X)) → PROPER(X)
PROPER(length(X)) → LENGTH(proper(X))
ACTIVE(U52(X)) → U521(active(X))
U411(ok(X1), ok(X2)) → U411(X1, X2)
ACTIVE(U62(tt, L)) → S(length(L))
ACTIVE(isNatList(cons(V1, V2))) → U511(isNat(V1), V2)
PROPER(length(X)) → PROPER(X)
U621(ok(X1), ok(X2)) → U621(X1, X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
ACTIVE(U41(X1, X2)) → U411(active(X1), X2)
PROPER(isNatList(X)) → ISNATLIST(proper(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
TOP(mark(X)) → PROPER(X)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(isNatIList(cons(V1, V2))) → U411(isNat(V1), V2)
PROPER(U11(X)) → U111(proper(X))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(isNat(s(V1))) → U211(isNat(V1))
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U51(tt, V2)) → ISNATLIST(V2)
PROPER(U21(X)) → U211(proper(X))
LENGTH(mark(X)) → LENGTH(X)
ACTIVE(U62(tt, L)) → LENGTH(L)
U511(mark(X1), X2) → U511(X1, X2)
S(mark(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(U41(X1, X2)) → PROPER(X2)
ACTIVE(length(X)) → LENGTH(active(X))
ISNATLIST(ok(X)) → ISNATLIST(X)
U111(mark(X)) → U111(X)
ACTIVE(U51(X1, X2)) → U511(active(X1), X2)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U42(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
U511(ok(X1), ok(X2)) → U511(X1, X2)
U311(mark(X)) → U311(X)
PROPER(U62(X1, X2)) → PROPER(X1)
ACTIVE(U62(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X)) → U111(active(X))
PROPER(U61(X1, X2, X3)) → U611(proper(X1), proper(X2), proper(X3))
U311(ok(X)) → U311(X)
U411(mark(X1), X2) → U411(X1, X2)
U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
U421(ok(X)) → U421(X)
U211(ok(X)) → U211(X)
ACTIVE(zeros) → CONS(0, zeros)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
ISNATILIST(ok(X)) → ISNATILIST(X)
ACTIVE(U61(tt, L, N)) → ISNAT(N)
PROPER(U11(X)) → PROPER(X)
ACTIVE(U42(X)) → U421(active(X))
U211(mark(X)) → U211(X)
PROPER(s(X)) → S(proper(X))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
PROPER(U31(X)) → PROPER(X)
PROPER(isNatIList(X)) → ISNATILIST(proper(X))
PROPER(U52(X)) → PROPER(X)
ACTIVE(U62(X1, X2)) → U621(active(X1), X2)
ACTIVE(U52(X)) → ACTIVE(X)
U521(mark(X)) → U521(X)
ACTIVE(length(cons(N, L))) → U611(isNatList(L), L, N)
PROPER(isNat(X)) → PROPER(X)
LENGTH(ok(X)) → LENGTH(X)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U41(X1, X2)) → U411(proper(X1), proper(X2))
PROPER(s(X)) → PROPER(X)
U621(mark(X1), X2) → U621(X1, X2)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X)) → ACTIVE(X)
PROPER(U61(X1, X2, X3)) → PROPER(X1)
TOP(ok(X)) → TOP(active(X))
PROPER(isNat(X)) → ISNAT(proper(X))
ACTIVE(U21(X)) → ACTIVE(X)
ISNAT(ok(X)) → ISNAT(X)
ACTIVE(U61(X1, X2, X3)) → U611(active(X1), X2, X3)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U52(X)) → U521(proper(X))
U521(ok(X)) → U521(X)
U111(ok(X)) → U111(X)
U421(mark(X)) → U421(X)
ACTIVE(U41(tt, V2)) → ISNATILIST(V2)
ACTIVE(U21(X)) → U211(active(X))
PROPER(U51(X1, X2)) → U511(proper(X1), proper(X2))
PROPER(U62(X1, X2)) → U621(proper(X1), proper(X2))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(s(X)) → S(active(X))
PROPER(U31(X)) → U311(proper(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
QDP
                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(tt, V2)) → U421(isNatIList(V2))
PROPER(U51(X1, X2)) → PROPER(X2)
ACTIVE(U51(tt, V2)) → U521(isNatList(V2))
ACTIVE(U31(X)) → U311(active(X))
PROPER(U42(X)) → U421(proper(X))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
PROPER(U62(X1, X2)) → PROPER(X2)
ACTIVE(U61(tt, L, N)) → U621(isNat(N), L)
PROPER(isNatList(X)) → PROPER(X)
PROPER(length(X)) → LENGTH(proper(X))
ACTIVE(U52(X)) → U521(active(X))
U411(ok(X1), ok(X2)) → U411(X1, X2)
ACTIVE(U62(tt, L)) → S(length(L))
ACTIVE(isNatList(cons(V1, V2))) → U511(isNat(V1), V2)
PROPER(length(X)) → PROPER(X)
U621(ok(X1), ok(X2)) → U621(X1, X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
ACTIVE(U41(X1, X2)) → U411(active(X1), X2)
PROPER(isNatList(X)) → ISNATLIST(proper(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
TOP(mark(X)) → PROPER(X)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(isNatIList(cons(V1, V2))) → U411(isNat(V1), V2)
PROPER(U11(X)) → U111(proper(X))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(isNat(s(V1))) → U211(isNat(V1))
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U51(tt, V2)) → ISNATLIST(V2)
PROPER(U21(X)) → U211(proper(X))
LENGTH(mark(X)) → LENGTH(X)
ACTIVE(U62(tt, L)) → LENGTH(L)
U511(mark(X1), X2) → U511(X1, X2)
S(mark(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(U41(X1, X2)) → PROPER(X2)
ACTIVE(length(X)) → LENGTH(active(X))
ISNATLIST(ok(X)) → ISNATLIST(X)
U111(mark(X)) → U111(X)
ACTIVE(U51(X1, X2)) → U511(active(X1), X2)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U42(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
U511(ok(X1), ok(X2)) → U511(X1, X2)
U311(mark(X)) → U311(X)
PROPER(U62(X1, X2)) → PROPER(X1)
ACTIVE(U62(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X)) → U111(active(X))
PROPER(U61(X1, X2, X3)) → U611(proper(X1), proper(X2), proper(X3))
U311(ok(X)) → U311(X)
U411(mark(X1), X2) → U411(X1, X2)
U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
U421(ok(X)) → U421(X)
U211(ok(X)) → U211(X)
ACTIVE(zeros) → CONS(0, zeros)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
ISNATILIST(ok(X)) → ISNATILIST(X)
ACTIVE(U61(tt, L, N)) → ISNAT(N)
PROPER(U11(X)) → PROPER(X)
ACTIVE(U42(X)) → U421(active(X))
U211(mark(X)) → U211(X)
PROPER(s(X)) → S(proper(X))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
PROPER(U31(X)) → PROPER(X)
PROPER(isNatIList(X)) → ISNATILIST(proper(X))
PROPER(U52(X)) → PROPER(X)
ACTIVE(U62(X1, X2)) → U621(active(X1), X2)
ACTIVE(U52(X)) → ACTIVE(X)
U521(mark(X)) → U521(X)
ACTIVE(length(cons(N, L))) → U611(isNatList(L), L, N)
PROPER(isNat(X)) → PROPER(X)
LENGTH(ok(X)) → LENGTH(X)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U41(X1, X2)) → U411(proper(X1), proper(X2))
PROPER(s(X)) → PROPER(X)
U621(mark(X1), X2) → U621(X1, X2)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X)) → ACTIVE(X)
PROPER(U61(X1, X2, X3)) → PROPER(X1)
TOP(ok(X)) → TOP(active(X))
PROPER(isNat(X)) → ISNAT(proper(X))
ACTIVE(U21(X)) → ACTIVE(X)
ISNAT(ok(X)) → ISNAT(X)
ACTIVE(U61(X1, X2, X3)) → U611(active(X1), X2, X3)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U52(X)) → U521(proper(X))
U521(ok(X)) → U521(X)
U111(ok(X)) → U111(X)
U421(mark(X)) → U421(X)
ACTIVE(U41(tt, V2)) → ISNATILIST(V2)
ACTIVE(U21(X)) → U211(active(X))
PROPER(U51(X1, X2)) → U511(proper(X1), proper(X2))
PROPER(U62(X1, X2)) → U621(proper(X1), proper(X2))
TOP(mark(X)) → TOP(proper(X))
ACTIVE(s(X)) → S(active(X))
PROPER(U31(X)) → U311(proper(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 18 SCCs with 46 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(ok(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(ok(X)) → ISNATLIST(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(ok(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(ok(X)) → ISNATILIST(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X1), X2) → U621(X1, X2)
U621(ok(X1), ok(X2)) → U621(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X1), X2) → U621(X1, X2)
U621(ok(X1), ok(X2)) → U621(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X)) → U521(X)
U521(ok(X)) → U521(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X)) → U521(X)
U521(ok(X)) → U521(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X)) → U421(X)
U421(ok(X)) → U421(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X)) → U421(X)
U421(ok(X)) → U421(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X)) → U311(X)
U311(mark(X)) → U311(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X)) → U311(X)
U311(mark(X)) → U311(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X)) → U211(X)
U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X)) → U211(X)
U211(mark(X)) → U211(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X)) → U111(X)
U111(ok(X)) → U111(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X)) → U111(X)
U111(ok(X)) → U111(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNat(X)) → PROPER(X)
PROPER(U11(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(length(X)) → PROPER(X)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U62(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(isNatList(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U42(X)) → PROPER(X)
PROPER(U52(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U62(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNat(X)) → PROPER(X)
PROPER(U11(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(length(X)) → PROPER(X)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U62(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(isNatList(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U52(X)) → PROPER(X)
PROPER(U42(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U62(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U62(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QDPSizeChangeProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U62(X1, X2)) → ACTIVE(X1)
ACTIVE(length(X)) → ACTIVE(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = x1   
POL(U21(x1)) = x1   
POL(U31(x1)) = 2·x1   
POL(U41(x1, x2)) = x1 + x2   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = 2·x1 + 2·x2   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = x1 + 2·x2 + 2·x3   
POL(U62(x1, x2)) = x1 + 2·x2   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(isNat(x1)) = 2·x1   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = 2·x1   
POL(length(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = 2·x1   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
QDP
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(mark(X)) → TOP(proper(X)) at position [0] we obtained the following new rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(tt)) → TOP(ok(tt))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(mark(tt)) → TOP(ok(tt))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(ok(X)) → TOP(active(X))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
QDP
                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(mark(tt)) → TOP(ok(tt))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(X)) → TOP(active(X))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(ok(X)) → TOP(active(X)) at position [0] we obtained the following new rules:

TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(U51(isNat(x0), x1)))
TOP(ok(U52(tt))) → TOP(mark(tt))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(U41(tt, x0))) → TOP(mark(U42(isNatIList(x0))))
TOP(ok(U42(tt))) → TOP(mark(tt))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U61(tt, x0, x1))) → TOP(mark(U62(isNat(x1), x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(ok(isNat(0))) → TOP(mark(tt))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U61(isNatList(x1), x1, x0)))
TOP(ok(U21(tt))) → TOP(mark(tt))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(U51(isNat(x0), x1)))
TOP(mark(tt)) → TOP(ok(tt))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(U52(tt))) → TOP(mark(tt))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(U41(tt, x0))) → TOP(mark(U42(isNatIList(x0))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(ok(U42(tt))) → TOP(mark(tt))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(U61(tt, x0, x1))) → TOP(mark(U62(isNat(x1), x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(ok(isNat(0))) → TOP(mark(tt))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U21(tt))) → TOP(mark(tt))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U61(isNatList(x1), x1, x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 5 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(U51(isNat(x0), x1)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(U41(tt, x0))) → TOP(mark(U42(isNatIList(x0))))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U61(tt, x0, x1))) → TOP(mark(U62(isNat(x1), x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U61(isNatList(x1), x1, x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
The remaining pairs can at least be oriented weakly.

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(U51(isNat(x0), x1)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(U41(tt, x0))) → TOP(mark(U42(isNatIList(x0))))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U61(tt, x0, x1))) → TOP(mark(U62(isNat(x1), x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U61(isNatList(x1), x1, x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = 0   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 1   

The following usable rules [17] were oriented:

U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U42(mark(X)) → mark(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U52(mark(X)) → mark(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
QDP
                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(U51(isNat(x0), x1)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(U41(tt, x0))) → TOP(mark(U42(isNatIList(x0))))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U61(tt, x0, x1))) → TOP(mark(U62(isNat(x1), x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U61(isNatList(x1), x1, x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(U51(isNat(x0), x1)))
TOP(ok(U41(tt, x0))) → TOP(mark(U42(isNatIList(x0))))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(U61(isNatList(x1), x1, x0)))
The remaining pairs can at least be oriented weakly.

TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U61(tt, x0, x1))) → TOP(mark(U62(isNat(x1), x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = 0   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 1   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 1   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = x1   
POL(isNatList(x1)) = 1 + x1   
POL(length(x1)) = 1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U42(mark(X)) → mark(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U52(mark(X)) → mark(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(zeros) → ok(zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
QDP
                                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(U61(tt, x0, x1))) → TOP(mark(U62(isNat(x1), x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
The remaining pairs can at least be oriented weakly.

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(U61(tt, x0, x1))) → TOP(mark(U62(isNat(x1), x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = 1   
POL(U21(x1)) = 1   
POL(U31(x1)) = 1   
POL(U41(x1, x2)) = 1   
POL(U42(x1)) = 1   
POL(U51(x1, x2)) = 1   
POL(U52(x1)) = 1   
POL(U61(x1, x2, x3)) = 1   
POL(U62(x1, x2)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 1   
POL(isNat(x1)) = 1   
POL(isNatIList(x1)) = 1   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 1   
POL(mark(x1)) = 1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(s(x1)) = 1   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U42(mark(X)) → mark(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U52(mark(X)) → mark(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
QDP
                                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U61(tt, x0, x1))) → TOP(mark(U62(isNat(x1), x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(U61(tt, x0, x1))) → TOP(mark(U62(isNat(x1), x0)))
The remaining pairs can at least be oriented weakly.

TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = 0   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 1   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U42(mark(X)) → mark(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U52(mark(X)) → mark(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
QDP
                                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(U51(tt, x0))) → TOP(mark(U52(isNatList(x0))))
The remaining pairs can at least be oriented weakly.

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = 0   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 1   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U42(mark(X)) → mark(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U52(mark(X)) → mark(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
QDP
                                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(isNat(s(x0)))) → TOP(mark(U21(isNat(x0))))
The remaining pairs can at least be oriented weakly.

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = 1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 1 + x1   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 1   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 1   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U42(mark(X)) → mark(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U52(mark(X)) → mark(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(zeros) → ok(zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
QDP
                                                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
The remaining pairs can at least be oriented weakly.

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = 1   
POL(U21(x1)) = 1   
POL(U31(x1)) = 1   
POL(U41(x1, x2)) = 1   
POL(U42(x1)) = 1   
POL(U51(x1, x2)) = 1   
POL(U52(x1)) = 1   
POL(U61(x1, x2, x3)) = 1   
POL(U62(x1, x2)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 1   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 1   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 1   
POL(mark(x1)) = 1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(s(x1)) = 1   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U42(mark(X)) → mark(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U52(mark(X)) → mark(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
QDP
                                                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(U41(isNat(x0), x1)))
The remaining pairs can at least be oriented weakly.

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = 0   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = x1   
POL(U42(x1)) = 0   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = 0   
POL(U61(x1, x2, x3)) = 0   
POL(U62(x1, x2)) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 1   
POL(isNat(x1)) = 1   
POL(isNatIList(x1)) = 1 + x1   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(zeros) = 1   

The following usable rules [17] were oriented:

U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(X)) → U11(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(0)) → mark(tt)
active(U62(tt, L)) → mark(s(length(L)))
active(U62(X1, X2)) → U62(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U52(X)) → U52(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U31(X)) → U31(active(X))
active(U21(X)) → U21(active(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U42(mark(X)) → mark(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U52(mark(X)) → mark(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
active(s(X)) → s(active(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
active(length(X)) → length(active(X))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(zeros) → ok(zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
QDP
                                                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(U62(tt, x0))) → TOP(mark(s(length(x0))))
The remaining pairs can at least be oriented weakly.

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = 0   
POL(U21(x1)) = x1   
POL(U31(x1)) = 0   
POL(U41(x1, x2)) = 0   
POL(U42(x1)) = x1   
POL(U51(x1, x2)) = 0   
POL(U52(x1)) = x1   
POL(U61(x1, x2, x3)) = x1   
POL(U62(x1, x2)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 0   
POL(isNat(x1)) = 1   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = x1   
POL(s(x1)) = 0   
POL(tt) = 1   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U11(X)) → U11(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(0)) → mark(tt)
active(U62(tt, L)) → mark(s(length(L)))
active(U62(X1, X2)) → U62(active(X1), X2)
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U52(X)) → U52(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U31(X)) → U31(active(X))
active(U21(X)) → U21(active(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U42(mark(X)) → mark(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U52(mark(X)) → mark(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
active(s(X)) → s(active(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
active(length(X)) → length(active(X))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(zeros) → ok(zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
QDP
                                                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
The remaining pairs can at least be oriented weakly.

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = x1   
POL(U11(x1)) = 1   
POL(U21(x1)) = 1   
POL(U31(x1)) = 1   
POL(U41(x1, x2)) = 1   
POL(U42(x1)) = 1   
POL(U51(x1, x2)) = 1   
POL(U52(x1)) = 1   
POL(U61(x1, x2, x3)) = 1   
POL(U62(x1, x2)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 1   
POL(isNat(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 1   
POL(mark(x1)) = 1   
POL(nil) = 0   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   
POL(s(x1)) = 1   
POL(tt) = 0   
POL(zeros) = 0   

The following usable rules [17] were oriented:

U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U42(mark(X)) → mark(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U52(mark(X)) → mark(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesReductionPairsProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ QDPOrderProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ QDPOrderProof
                                                                                  ↳ QDP
                                                                                    ↳ QDPOrderProof
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(U11(x0))) → TOP(U11(proper(x0)))
TOP(ok(U62(x0, x1))) → TOP(U62(active(x0), x1))
TOP(mark(U51(x0, x1))) → TOP(U51(proper(x0), proper(x1)))
TOP(ok(U11(x0))) → TOP(U11(active(x0)))
TOP(ok(U42(x0))) → TOP(U42(active(x0)))
TOP(mark(U62(x0, x1))) → TOP(U62(proper(x0), proper(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(U31(x0))) → TOP(U31(proper(x0)))
TOP(mark(U52(x0))) → TOP(U52(proper(x0)))
TOP(ok(U52(x0))) → TOP(U52(active(x0)))
TOP(mark(U41(x0, x1))) → TOP(U41(proper(x0), proper(x1)))
TOP(mark(U21(x0))) → TOP(U21(proper(x0)))
TOP(ok(U61(x0, x1, x2))) → TOP(U61(active(x0), x1, x2))
TOP(ok(U41(x0, x1))) → TOP(U41(active(x0), x1))
TOP(ok(U21(x0))) → TOP(U21(active(x0)))
TOP(ok(U31(x0))) → TOP(U31(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(U51(x0, x1))) → TOP(U51(active(x0), x1))
TOP(mark(U42(x0))) → TOP(U42(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(U61(x0, x1, x2))) → TOP(U61(proper(x0), proper(x1), proper(x2)))

The TRS R consists of the following rules:

proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
isNat(ok(X)) → ok(isNat(X))
U62(mark(X1), X2) → mark(U62(X1, X2))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
isNatList(ok(X)) → ok(isNatList(X))
U52(mark(X)) → mark(U52(X))
U52(ok(X)) → ok(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
U42(mark(X)) → mark(U42(X))
U42(ok(X)) → ok(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(mark(X)) → mark(U31(X))
U31(ok(X)) → ok(U31(X))
U21(mark(X)) → mark(U21(X))
U21(ok(X)) → ok(U21(X))
U11(mark(X)) → mark(U11(X))
U11(ok(X)) → ok(U11(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(zeros) → mark(cons(0, zeros))
active(U21(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.