Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__f(X) → a__if(mark(X), c, f(true))
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(f(X)) → a__f(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
mark(true) → true
mark(false) → false
a__f(X) → f(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__f(X) → a__if(mark(X), c, f(true))
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(f(X)) → a__f(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
mark(true) → true
mark(false) → false
a__f(X) → f(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__f(X) → a__if(mark(X), c, f(true))
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(f(X)) → a__f(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
mark(true) → true
mark(false) → false
a__f(X) → f(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__if(false, X, Y) → mark(Y)
Used ordering:
Polynomial interpretation [25]:
POL(a__f(x1)) = x1
POL(a__if(x1, x2, x3)) = x1 + 2·x2 + 2·x3
POL(c) = 0
POL(f(x1)) = x1
POL(false) = 2
POL(if(x1, x2, x3)) = x1 + 2·x2 + 2·x3
POL(mark(x1)) = x1
POL(true) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__f(X) → a__if(mark(X), c, f(true))
a__if(true, X, Y) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
mark(true) → true
mark(false) → false
a__f(X) → f(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__f(X) → a__if(mark(X), c, f(true))
a__if(true, X, Y) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
mark(true) → true
mark(false) → false
a__f(X) → f(X)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__f(X) → a__if(mark(X), c, f(true))
mark(false) → false
a__f(X) → f(X)
Used ordering:
Polynomial interpretation [25]:
POL(a__f(x1)) = 2 + 2·x1
POL(a__if(x1, x2, x3)) = x1 + 2·x2 + x3
POL(c) = 0
POL(f(x1)) = 1 + 2·x1
POL(false) = 2
POL(if(x1, x2, x3)) = x1 + 2·x2 + x3
POL(mark(x1)) = 2·x1
POL(true) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__if(true, X, Y) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
mark(true) → true
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
a__if(true, X, Y) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
mark(true) → true
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
a__if(true, X, Y) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(true) → true
a__if(X1, X2, X3) → if(X1, X2, X3)
Used ordering:
Polynomial interpretation [25]:
POL(a__f(x1)) = 2 + 2·x1
POL(a__if(x1, x2, x3)) = 2 + x1 + 2·x2 + 2·x3
POL(c) = 0
POL(f(x1)) = 2 + 2·x1
POL(if(x1, x2, x3)) = 1 + x1 + 2·x2 + x3
POL(mark(x1)) = 2·x1
POL(true) = 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
mark(if(X1, X2, X3)) → a__if(mark(X1), mark(X2), X3)
mark(c) → c
Used ordering:
Polynomial interpretation [25]:
POL(a__if(x1, x2, x3)) = 1 + x1 + x2 + 2·x3
POL(c) = 1
POL(if(x1, x2, x3)) = 2 + x1 + x2 + 2·x3
POL(mark(x1)) = 2 + 2·x1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof
Q restricted rewrite system:
R is empty.
Q is empty.
The TRS R is empty. Hence, termination is trivially proven.