Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(dbls(cons(X, Y))) → DBLS(Y)
ACTIVE(quote(s(X))) → QUOTE(X)
MARK(indx(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
ACTIVE(indx(cons(X, Y), Z)) → SEL(X, Z)
DBL1(mark(X)) → DBL1(X)
ACTIVE(dbl1(s(X))) → DBL1(X)
MARK(sel1(X1, X2)) → SEL1(mark(X1), mark(X2))
MARK(quote(X)) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(sel1(s(X), cons(Y, Z))) → SEL1(X, Z)
QUOTE(mark(X)) → QUOTE(X)
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
S1(mark(X)) → S1(X)
ACTIVE(quote(0)) → MARK(01)
MARK(quote(X)) → QUOTE(mark(X))
QUOTE(active(X)) → QUOTE(X)
ACTIVE(dbl(s(X))) → DBL(X)
SEL1(X1, active(X2)) → SEL1(X1, X2)
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(s1(X)) → S1(mark(X))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
INDX(X1, mark(X2)) → INDX(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(dbl(0)) → MARK(0)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
CONS(X1, active(X2)) → CONS(X1, X2)
ACTIVE(indx(cons(X, Y), Z)) → INDX(Y, Z)
DBL1(active(X)) → DBL1(X)
DBLS(mark(X)) → DBLS(X)
S(mark(X)) → S(X)
ACTIVE(dbl(s(X))) → S(s(dbl(X)))
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(quote(sel(X, Y))) → SEL1(X, Y)
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → S(X)
S1(active(X)) → S1(X)
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(sel(X1, X2)) → MARK(X2)
SEL1(mark(X1), X2) → SEL1(X1, X2)
FROM(mark(X)) → FROM(X)
ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y)))
MARK(sel1(X1, X2)) → ACTIVE(sel1(mark(X1), mark(X2)))
FROM(active(X)) → FROM(X)
DBL(active(X)) → DBL(X)
ACTIVE(quote(dbl(X))) → DBL1(X)
DBL(mark(X)) → DBL(X)
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(01) → ACTIVE(01)
MARK(indx(X1, X2)) → INDX(mark(X1), X2)
SEL1(active(X1), X2) → SEL1(X1, X2)
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
S(active(X)) → S(X)
ACTIVE(quote(s(X))) → S1(quote(X))
ACTIVE(dbls(nil)) → MARK(nil)
DBLS(active(X)) → DBLS(X)
MARK(s1(X)) → MARK(X)
INDX(mark(X1), X2) → INDX(X1, X2)
MARK(sel1(X1, X2)) → MARK(X1)
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
CONS(active(X1), X2) → CONS(X1, X2)
ACTIVE(dbls(cons(X, Y))) → DBL(X)
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(dbl(s(X))) → S(dbl(X))
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
MARK(dbls(X)) → MARK(X)
MARK(dbls(X)) → DBLS(mark(X))
MARK(s1(X)) → ACTIVE(s1(mark(X)))
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
ACTIVE(dbls(cons(X, Y))) → CONS(dbl(X), dbls(Y))
INDX(X1, active(X2)) → INDX(X1, X2)
MARK(dbl1(X)) → ACTIVE(dbl1(mark(X)))
ACTIVE(dbl1(s(X))) → S1(dbl1(X))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
MARK(dbl(X)) → DBL(mark(X))
MARK(dbl1(X)) → DBL1(mark(X))
SEL1(X1, mark(X2)) → SEL1(X1, X2)
ACTIVE(indx(cons(X, Y), Z)) → CONS(sel(X, Z), indx(Y, Z))
ACTIVE(dbl1(s(X))) → S1(s1(dbl1(X)))
MARK(quote(X)) → ACTIVE(quote(mark(X)))
INDX(active(X1), X2) → INDX(X1, X2)
ACTIVE(dbl1(0)) → MARK(01)
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(0) → ACTIVE(0)
MARK(sel1(X1, X2)) → MARK(X2)
MARK(dbl1(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(indx(nil, X)) → MARK(nil)
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
ACTIVE(sel(s(X), cons(Y, Z))) → SEL(X, Z)
MARK(nil) → ACTIVE(nil)
ACTIVE(from(X)) → CONS(X, from(s(X)))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(dbls(cons(X, Y))) → DBLS(Y)
ACTIVE(quote(s(X))) → QUOTE(X)
MARK(indx(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
ACTIVE(indx(cons(X, Y), Z)) → SEL(X, Z)
DBL1(mark(X)) → DBL1(X)
ACTIVE(dbl1(s(X))) → DBL1(X)
MARK(sel1(X1, X2)) → SEL1(mark(X1), mark(X2))
MARK(quote(X)) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(sel1(s(X), cons(Y, Z))) → SEL1(X, Z)
QUOTE(mark(X)) → QUOTE(X)
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
S1(mark(X)) → S1(X)
ACTIVE(quote(0)) → MARK(01)
MARK(quote(X)) → QUOTE(mark(X))
QUOTE(active(X)) → QUOTE(X)
ACTIVE(dbl(s(X))) → DBL(X)
SEL1(X1, active(X2)) → SEL1(X1, X2)
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(s1(X)) → S1(mark(X))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
INDX(X1, mark(X2)) → INDX(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(dbl(0)) → MARK(0)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
CONS(X1, active(X2)) → CONS(X1, X2)
ACTIVE(indx(cons(X, Y), Z)) → INDX(Y, Z)
DBL1(active(X)) → DBL1(X)
DBLS(mark(X)) → DBLS(X)
S(mark(X)) → S(X)
ACTIVE(dbl(s(X))) → S(s(dbl(X)))
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(quote(sel(X, Y))) → SEL1(X, Y)
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → S(X)
S1(active(X)) → S1(X)
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(sel(X1, X2)) → MARK(X2)
SEL1(mark(X1), X2) → SEL1(X1, X2)
FROM(mark(X)) → FROM(X)
ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y)))
MARK(sel1(X1, X2)) → ACTIVE(sel1(mark(X1), mark(X2)))
FROM(active(X)) → FROM(X)
DBL(active(X)) → DBL(X)
ACTIVE(quote(dbl(X))) → DBL1(X)
DBL(mark(X)) → DBL(X)
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(01) → ACTIVE(01)
MARK(indx(X1, X2)) → INDX(mark(X1), X2)
SEL1(active(X1), X2) → SEL1(X1, X2)
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
S(active(X)) → S(X)
ACTIVE(quote(s(X))) → S1(quote(X))
ACTIVE(dbls(nil)) → MARK(nil)
DBLS(active(X)) → DBLS(X)
MARK(s1(X)) → MARK(X)
INDX(mark(X1), X2) → INDX(X1, X2)
MARK(sel1(X1, X2)) → MARK(X1)
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
CONS(active(X1), X2) → CONS(X1, X2)
ACTIVE(dbls(cons(X, Y))) → DBL(X)
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(dbl(s(X))) → S(dbl(X))
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
MARK(dbls(X)) → MARK(X)
MARK(dbls(X)) → DBLS(mark(X))
MARK(s1(X)) → ACTIVE(s1(mark(X)))
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
ACTIVE(dbls(cons(X, Y))) → CONS(dbl(X), dbls(Y))
INDX(X1, active(X2)) → INDX(X1, X2)
MARK(dbl1(X)) → ACTIVE(dbl1(mark(X)))
ACTIVE(dbl1(s(X))) → S1(dbl1(X))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
MARK(dbl(X)) → DBL(mark(X))
MARK(dbl1(X)) → DBL1(mark(X))
SEL1(X1, mark(X2)) → SEL1(X1, X2)
ACTIVE(indx(cons(X, Y), Z)) → CONS(sel(X, Z), indx(Y, Z))
ACTIVE(dbl1(s(X))) → S1(s1(dbl1(X)))
MARK(quote(X)) → ACTIVE(quote(mark(X)))
INDX(active(X1), X2) → INDX(X1, X2)
ACTIVE(dbl1(0)) → MARK(01)
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(0) → ACTIVE(0)
MARK(sel1(X1, X2)) → MARK(X2)
MARK(dbl1(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(indx(nil, X)) → MARK(nil)
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
ACTIVE(sel(s(X), cons(Y, Z))) → SEL(X, Z)
MARK(nil) → ACTIVE(nil)
ACTIVE(from(X)) → CONS(X, from(s(X)))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 12 SCCs with 37 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

QUOTE(mark(X)) → QUOTE(X)
QUOTE(active(X)) → QUOTE(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

QUOTE(mark(X)) → QUOTE(X)
QUOTE(active(X)) → QUOTE(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL1(X1, mark(X2)) → SEL1(X1, X2)
SEL1(X1, active(X2)) → SEL1(X1, X2)
SEL1(active(X1), X2) → SEL1(X1, X2)
SEL1(mark(X1), X2) → SEL1(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL1(X1, mark(X2)) → SEL1(X1, X2)
SEL1(active(X1), X2) → SEL1(X1, X2)
SEL1(X1, active(X2)) → SEL1(X1, X2)
SEL1(mark(X1), X2) → SEL1(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S1(active(X)) → S1(X)
S1(mark(X)) → S1(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S1(active(X)) → S1(X)
S1(mark(X)) → S1(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBL1(mark(X)) → DBL1(X)
DBL1(active(X)) → DBL1(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBL1(mark(X)) → DBL1(X)
DBL1(active(X)) → DBL1(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INDX(X1, active(X2)) → INDX(X1, X2)
INDX(active(X1), X2) → INDX(X1, X2)
INDX(mark(X1), X2) → INDX(X1, X2)
INDX(X1, mark(X2)) → INDX(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INDX(active(X1), X2) → INDX(X1, X2)
INDX(X1, active(X2)) → INDX(X1, X2)
INDX(mark(X1), X2) → INDX(X1, X2)
INDX(X1, mark(X2)) → INDX(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBLS(mark(X)) → DBLS(X)
DBLS(active(X)) → DBLS(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBLS(mark(X)) → DBLS(X)
DBLS(active(X)) → DBLS(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBL(mark(X)) → DBL(X)
DBL(active(X)) → DBL(X)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DBL(mark(X)) → DBL(X)
DBL(active(X)) → DBL(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(sel1(X1, X2)) → ACTIVE(sel1(mark(X1), mark(X2)))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(s1(X)) → ACTIVE(s1(mark(X)))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(quote(X)) → MARK(X)
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(dbl1(X)) → ACTIVE(dbl1(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(quote(X)) → ACTIVE(quote(mark(X)))
MARK(dbl(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(X))
MARK(s1(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel1(X1, X2)) → MARK(X1)
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(sel1(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(dbl1(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(s1(X)) → ACTIVE(s1(mark(X)))
MARK(s(X)) → ACTIVE(s(X))
MARK(cons(X1, X2)) → ACTIVE(cons(X1, X2))
The remaining pairs can at least be oriented weakly.

ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(sel1(X1, X2)) → ACTIVE(sel1(mark(X1), mark(X2)))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(quote(X)) → MARK(X)
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(dbl1(X)) → ACTIVE(dbl1(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(quote(X)) → ACTIVE(quote(mark(X)))
MARK(dbl(X)) → MARK(X)
MARK(s1(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel1(X1, X2)) → MARK(X1)
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(sel1(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(dbl1(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(sel(X1, X2)) → MARK(X2)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(01) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(dbl(x1)) = 1   
POL(dbl1(x1)) = 1   
POL(dbls(x1)) = 1   
POL(from(x1)) = 1   
POL(indx(x1, x2)) = 1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(quote(x1)) = 1   
POL(s(x1)) = 0   
POL(s1(x1)) = 0   
POL(sel(x1, x2)) = 1   
POL(sel1(x1, x2)) = 1   

The following usable rules [17] were oriented:

dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
from(active(X)) → from(X)
from(mark(X)) → from(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
dbl1(active(X)) → dbl1(X)
dbl1(mark(X)) → dbl1(X)
sel(X1, mark(X2)) → sel(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
sel1(mark(X1), X2) → sel1(X1, X2)
quote(active(X)) → quote(X)
quote(mark(X)) → quote(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(sel1(X1, X2)) → ACTIVE(sel1(mark(X1), mark(X2)))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(dbl1(X)) → ACTIVE(dbl1(mark(X)))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(quote(X)) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(quote(X)) → ACTIVE(quote(mark(X)))
MARK(dbl(X)) → MARK(X)
MARK(s1(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel1(X1, X2)) → MARK(X1)
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(sel1(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(dbl1(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVE(dbls(cons(X, Y))) → MARK(cons(dbl(X), dbls(Y))) at position [0] we obtained the following new rules:

ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
QDP
                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel1(X1, X2)) → ACTIVE(sel1(mark(X1), mark(X2)))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(quote(X)) → MARK(X)
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(dbl1(X)) → ACTIVE(dbl1(mark(X)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
MARK(quote(X)) → ACTIVE(quote(mark(X)))
MARK(s1(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(sel1(X1, X2)) → MARK(X1)
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(sel1(X1, X2)) → MARK(X2)
MARK(dbl1(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(sel1(X1, X2)) → ACTIVE(sel1(mark(X1), mark(X2))) at position [0] we obtained the following new rules:

MARK(sel1(y0, indx(x0, x1))) → ACTIVE(sel1(mark(y0), active(indx(mark(x0), x1))))
MARK(sel1(dbls(x0), y1)) → ACTIVE(sel1(active(dbls(mark(x0))), mark(y1)))
MARK(sel1(quote(x0), y1)) → ACTIVE(sel1(active(quote(mark(x0))), mark(y1)))
MARK(sel1(from(x0), y1)) → ACTIVE(sel1(active(from(x0)), mark(y1)))
MARK(sel1(y0, s(x0))) → ACTIVE(sel1(mark(y0), active(s(x0))))
MARK(sel1(y0, s1(x0))) → ACTIVE(sel1(mark(y0), active(s1(mark(x0)))))
MARK(sel1(y0, sel1(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(sel1(0, y1)) → ACTIVE(sel1(active(0), mark(y1)))
MARK(sel1(y0, 0)) → ACTIVE(sel1(mark(y0), active(0)))
MARK(sel1(s1(x0), y1)) → ACTIVE(sel1(active(s1(mark(x0))), mark(y1)))
MARK(sel1(y0, x1)) → ACTIVE(sel1(mark(y0), x1))
MARK(sel1(x0, y1)) → ACTIVE(sel1(x0, mark(y1)))
MARK(sel1(nil, y1)) → ACTIVE(sel1(active(nil), mark(y1)))
MARK(sel1(y0, nil)) → ACTIVE(sel1(mark(y0), active(nil)))
MARK(sel1(y0, sel(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(sel1(y0, dbl1(x0))) → ACTIVE(sel1(mark(y0), active(dbl1(mark(x0)))))
MARK(sel1(dbl1(x0), y1)) → ACTIVE(sel1(active(dbl1(mark(x0))), mark(y1)))
MARK(sel1(sel1(x0, x1), y1)) → ACTIVE(sel1(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(sel1(y0, 01)) → ACTIVE(sel1(mark(y0), active(01)))
MARK(sel1(01, y1)) → ACTIVE(sel1(active(01), mark(y1)))
MARK(sel1(y0, quote(x0))) → ACTIVE(sel1(mark(y0), active(quote(mark(x0)))))
MARK(sel1(sel(x0, x1), y1)) → ACTIVE(sel1(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel1(dbl(x0), y1)) → ACTIVE(sel1(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(y0, dbls(x0))) → ACTIVE(sel1(mark(y0), active(dbls(mark(x0)))))
MARK(sel1(cons(x0, x1), y1)) → ACTIVE(sel1(active(cons(x0, x1)), mark(y1)))
MARK(sel1(indx(x0, x1), y1)) → ACTIVE(sel1(active(indx(mark(x0), x1)), mark(y1)))
MARK(sel1(y0, from(x0))) → ACTIVE(sel1(mark(y0), active(from(x0))))
MARK(sel1(s(x0), y1)) → ACTIVE(sel1(active(s(x0)), mark(y1)))
MARK(sel1(y0, cons(x0, x1))) → ACTIVE(sel1(mark(y0), active(cons(x0, x1))))
MARK(sel1(y0, dbl(x0))) → ACTIVE(sel1(mark(y0), active(dbl(mark(x0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(sel1(quote(x0), y1)) → ACTIVE(sel1(active(quote(mark(x0))), mark(y1)))
MARK(sel1(y0, s(x0))) → ACTIVE(sel1(mark(y0), active(s(x0))))
MARK(sel1(y0, s1(x0))) → ACTIVE(sel1(mark(y0), active(s1(mark(x0)))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel1(y0, sel1(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(sel1(s1(x0), y1)) → ACTIVE(sel1(active(s1(mark(x0))), mark(y1)))
MARK(sel1(y0, x1)) → ACTIVE(sel1(mark(y0), x1))
MARK(quote(X)) → MARK(X)
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
MARK(sel1(x0, y1)) → ACTIVE(sel1(x0, mark(y1)))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel1(nil, y1)) → ACTIVE(sel1(active(nil), mark(y1)))
MARK(sel1(y0, nil)) → ACTIVE(sel1(mark(y0), active(nil)))
MARK(dbl(X)) → MARK(X)
MARK(sel1(y0, sel(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(s1(X)) → MARK(X)
MARK(sel1(sel1(x0, x1), y1)) → ACTIVE(sel1(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(sel1(X1, X2)) → MARK(X1)
MARK(sel1(y0, quote(x0))) → ACTIVE(sel1(mark(y0), active(quote(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel1(y0, dbls(x0))) → ACTIVE(sel1(mark(y0), active(dbls(mark(x0)))))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(sel1(y0, from(x0))) → ACTIVE(sel1(mark(y0), active(from(x0))))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(sel1(y0, dbl(x0))) → ACTIVE(sel1(mark(y0), active(dbl(mark(x0)))))
MARK(sel1(y0, indx(x0, x1))) → ACTIVE(sel1(mark(y0), active(indx(mark(x0), x1))))
MARK(sel1(dbls(x0), y1)) → ACTIVE(sel1(active(dbls(mark(x0))), mark(y1)))
MARK(dbls(X)) → MARK(X)
MARK(sel1(from(x0), y1)) → ACTIVE(sel1(active(from(x0)), mark(y1)))
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel1(0, y1)) → ACTIVE(sel1(active(0), mark(y1)))
MARK(sel1(y0, 0)) → ACTIVE(sel1(mark(y0), active(0)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbl1(X)) → ACTIVE(dbl1(mark(X)))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(quote(X)) → ACTIVE(quote(mark(X)))
MARK(sel1(dbl1(x0), y1)) → ACTIVE(sel1(active(dbl1(mark(x0))), mark(y1)))
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel1(y0, dbl1(x0))) → ACTIVE(sel1(mark(y0), active(dbl1(mark(x0)))))
MARK(sel1(01, y1)) → ACTIVE(sel1(active(01), mark(y1)))
MARK(sel1(y0, 01)) → ACTIVE(sel1(mark(y0), active(01)))
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(sel1(sel(x0, x1), y1)) → ACTIVE(sel1(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel1(dbl(x0), y1)) → ACTIVE(sel1(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(cons(x0, x1), y1)) → ACTIVE(sel1(active(cons(x0, x1)), mark(y1)))
MARK(sel1(X1, X2)) → MARK(X2)
MARK(dbl1(X)) → MARK(X)
MARK(sel1(indx(x0, x1), y1)) → ACTIVE(sel1(active(indx(mark(x0), x1)), mark(y1)))
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(sel1(s(x0), y1)) → ACTIVE(sel1(active(s(x0)), mark(y1)))
MARK(sel1(y0, cons(x0, x1))) → ACTIVE(sel1(mark(y0), active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(dbl1(X)) → ACTIVE(dbl1(mark(X))) at position [0] we obtained the following new rules:

MARK(dbl1(01)) → ACTIVE(dbl1(active(01)))
MARK(dbl1(indx(x0, x1))) → ACTIVE(dbl1(active(indx(mark(x0), x1))))
MARK(dbl1(0)) → ACTIVE(dbl1(active(0)))
MARK(dbl1(dbl1(x0))) → ACTIVE(dbl1(active(dbl1(mark(x0)))))
MARK(dbl1(nil)) → ACTIVE(dbl1(active(nil)))
MARK(dbl1(quote(x0))) → ACTIVE(dbl1(active(quote(mark(x0)))))
MARK(dbl1(from(x0))) → ACTIVE(dbl1(active(from(x0))))
MARK(dbl1(s(x0))) → ACTIVE(dbl1(active(s(x0))))
MARK(dbl1(s1(x0))) → ACTIVE(dbl1(active(s1(mark(x0)))))
MARK(dbl1(sel1(x0, x1))) → ACTIVE(dbl1(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(x0)) → ACTIVE(dbl1(x0))
MARK(dbl1(dbl(x0))) → ACTIVE(dbl1(active(dbl(mark(x0)))))
MARK(dbl1(dbls(x0))) → ACTIVE(dbl1(active(dbls(mark(x0)))))
MARK(dbl1(cons(x0, x1))) → ACTIVE(dbl1(active(cons(x0, x1))))
MARK(dbl1(sel(x0, x1))) → ACTIVE(dbl1(active(sel(mark(x0), mark(x1)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl1(0)) → ACTIVE(dbl1(active(0)))
MARK(sel1(quote(x0), y1)) → ACTIVE(sel1(active(quote(mark(x0))), mark(y1)))
MARK(dbl1(nil)) → ACTIVE(dbl1(active(nil)))
MARK(sel1(y0, s(x0))) → ACTIVE(sel1(mark(y0), active(s(x0))))
MARK(sel1(y0, s1(x0))) → ACTIVE(sel1(mark(y0), active(s1(mark(x0)))))
MARK(dbl1(s(x0))) → ACTIVE(dbl1(active(s(x0))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel1(y0, sel1(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(sel1(x0, x1))) → ACTIVE(dbl1(active(sel1(mark(x0), mark(x1)))))
MARK(sel1(s1(x0), y1)) → ACTIVE(sel1(active(s1(mark(x0))), mark(y1)))
MARK(sel1(y0, x1)) → ACTIVE(sel1(mark(y0), x1))
MARK(dbl1(dbl(x0))) → ACTIVE(dbl1(active(dbl(mark(x0)))))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(quote(X)) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(dbls(X)) → ACTIVE(dbls(mark(X)))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(sel1(x0, y1)) → ACTIVE(sel1(x0, mark(y1)))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel1(y0, nil)) → ACTIVE(sel1(mark(y0), active(nil)))
MARK(sel1(nil, y1)) → ACTIVE(sel1(active(nil), mark(y1)))
MARK(sel1(y0, sel(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(X)) → MARK(X)
MARK(s1(X)) → MARK(X)
MARK(sel1(sel1(x0, x1), y1)) → ACTIVE(sel1(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(dbl1(quote(x0))) → ACTIVE(dbl1(active(quote(mark(x0)))))
MARK(dbl1(from(x0))) → ACTIVE(dbl1(active(from(x0))))
MARK(sel1(X1, X2)) → MARK(X1)
MARK(sel1(y0, quote(x0))) → ACTIVE(sel1(mark(y0), active(quote(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel1(y0, dbls(x0))) → ACTIVE(sel1(mark(y0), active(dbls(mark(x0)))))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(dbl1(x0)) → ACTIVE(dbl1(x0))
MARK(sel1(y0, from(x0))) → ACTIVE(sel1(mark(y0), active(from(x0))))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(sel1(y0, dbl(x0))) → ACTIVE(sel1(mark(y0), active(dbl(mark(x0)))))
MARK(dbl1(indx(x0, x1))) → ACTIVE(dbl1(active(indx(mark(x0), x1))))
MARK(sel1(y0, indx(x0, x1))) → ACTIVE(sel1(mark(y0), active(indx(mark(x0), x1))))
MARK(sel1(dbls(x0), y1)) → ACTIVE(sel1(active(dbls(mark(x0))), mark(y1)))
MARK(dbl1(dbl1(x0))) → ACTIVE(dbl1(active(dbl1(mark(x0)))))
MARK(sel1(from(x0), y1)) → ACTIVE(sel1(active(from(x0)), mark(y1)))
MARK(dbls(X)) → MARK(X)
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel1(y0, 0)) → ACTIVE(sel1(mark(y0), active(0)))
MARK(sel1(0, y1)) → ACTIVE(sel1(active(0), mark(y1)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
MARK(dbl1(sel(x0, x1))) → ACTIVE(dbl1(active(sel(mark(x0), mark(x1)))))
MARK(dbl1(cons(x0, x1))) → ACTIVE(dbl1(active(cons(x0, x1))))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(dbl1(01)) → ACTIVE(dbl1(active(01)))
MARK(quote(X)) → ACTIVE(quote(mark(X)))
MARK(sel1(y0, dbl1(x0))) → ACTIVE(sel1(mark(y0), active(dbl1(mark(x0)))))
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel1(dbl1(x0), y1)) → ACTIVE(sel1(active(dbl1(mark(x0))), mark(y1)))
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(sel1(y0, 01)) → ACTIVE(sel1(mark(y0), active(01)))
MARK(sel1(01, y1)) → ACTIVE(sel1(active(01), mark(y1)))
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(sel1(sel(x0, x1), y1)) → ACTIVE(sel1(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(dbl1(s1(x0))) → ACTIVE(dbl1(active(s1(mark(x0)))))
MARK(sel1(dbl(x0), y1)) → ACTIVE(sel1(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(X1, X2)) → MARK(X2)
MARK(sel1(cons(x0, x1), y1)) → ACTIVE(sel1(active(cons(x0, x1)), mark(y1)))
MARK(dbl1(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(X))
MARK(sel1(indx(x0, x1), y1)) → ACTIVE(sel1(active(indx(mark(x0), x1)), mark(y1)))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(dbl1(dbls(x0))) → ACTIVE(dbl1(active(dbls(mark(x0)))))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(sel1(s(x0), y1)) → ACTIVE(sel1(active(s(x0)), mark(y1)))
MARK(sel1(y0, cons(x0, x1))) → ACTIVE(sel1(mark(y0), active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(dbls(X)) → ACTIVE(dbls(mark(X))) at position [0] we obtained the following new rules:

MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
MARK(dbls(01)) → ACTIVE(dbls(active(01)))
MARK(dbls(dbl1(x0))) → ACTIVE(dbls(active(dbl1(mark(x0)))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
MARK(dbls(quote(x0))) → ACTIVE(dbls(active(quote(mark(x0)))))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(dbls(s1(x0))) → ACTIVE(dbls(active(s1(mark(x0)))))
MARK(dbls(sel1(x0, x1))) → ACTIVE(dbls(active(sel1(mark(x0), mark(x1)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl1(0)) → ACTIVE(dbl1(active(0)))
MARK(dbls(dbl1(x0))) → ACTIVE(dbls(active(dbl1(mark(x0)))))
MARK(sel1(quote(x0), y1)) → ACTIVE(sel1(active(quote(mark(x0))), mark(y1)))
MARK(dbl1(nil)) → ACTIVE(dbl1(active(nil)))
MARK(sel1(y0, s(x0))) → ACTIVE(sel1(mark(y0), active(s(x0))))
MARK(sel1(y0, s1(x0))) → ACTIVE(sel1(mark(y0), active(s1(mark(x0)))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(dbl1(s(x0))) → ACTIVE(dbl1(active(s(x0))))
MARK(sel1(y0, sel1(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(dbls(quote(x0))) → ACTIVE(dbls(active(quote(mark(x0)))))
MARK(sel1(s1(x0), y1)) → ACTIVE(sel1(active(s1(mark(x0))), mark(y1)))
MARK(dbl1(sel1(x0, x1))) → ACTIVE(dbl1(active(sel1(mark(x0), mark(x1)))))
MARK(sel1(y0, x1)) → ACTIVE(sel1(mark(y0), x1))
MARK(dbl1(dbl(x0))) → ACTIVE(dbl1(active(dbl(mark(x0)))))
MARK(quote(X)) → MARK(X)
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(sel1(x0, y1)) → ACTIVE(sel1(x0, mark(y1)))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(dbls(01)) → ACTIVE(dbls(active(01)))
MARK(sel1(nil, y1)) → ACTIVE(sel1(active(nil), mark(y1)))
MARK(sel1(y0, nil)) → ACTIVE(sel1(mark(y0), active(nil)))
MARK(dbl(X)) → MARK(X)
MARK(sel1(y0, sel(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(s1(X)) → MARK(X)
MARK(sel1(sel1(x0, x1), y1)) → ACTIVE(sel1(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(dbl1(quote(x0))) → ACTIVE(dbl1(active(quote(mark(x0)))))
MARK(sel1(X1, X2)) → MARK(X1)
MARK(dbl1(from(x0))) → ACTIVE(dbl1(active(from(x0))))
MARK(sel1(y0, quote(x0))) → ACTIVE(sel1(mark(y0), active(quote(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel1(y0, dbls(x0))) → ACTIVE(sel1(mark(y0), active(dbls(mark(x0)))))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(dbl1(x0)) → ACTIVE(dbl1(x0))
MARK(sel1(y0, from(x0))) → ACTIVE(sel1(mark(y0), active(from(x0))))
MARK(dbls(s1(x0))) → ACTIVE(dbls(active(s1(mark(x0)))))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(dbls(sel1(x0, x1))) → ACTIVE(dbls(active(sel1(mark(x0), mark(x1)))))
MARK(sel1(y0, dbl(x0))) → ACTIVE(sel1(mark(y0), active(dbl(mark(x0)))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
MARK(sel1(y0, indx(x0, x1))) → ACTIVE(sel1(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl1(indx(x0, x1))) → ACTIVE(dbl1(active(indx(mark(x0), x1))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(sel1(dbls(x0), y1)) → ACTIVE(sel1(active(dbls(mark(x0))), mark(y1)))
MARK(dbl1(dbl1(x0))) → ACTIVE(dbl1(active(dbl1(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(dbls(X)) → MARK(X)
MARK(sel1(from(x0), y1)) → ACTIVE(sel1(active(from(x0)), mark(y1)))
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
MARK(sel1(0, y1)) → ACTIVE(sel1(active(0), mark(y1)))
MARK(sel1(y0, 0)) → ACTIVE(sel1(mark(y0), active(0)))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
MARK(dbl1(cons(x0, x1))) → ACTIVE(dbl1(active(cons(x0, x1))))
MARK(dbl1(sel(x0, x1))) → ACTIVE(dbl1(active(sel(mark(x0), mark(x1)))))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(dbl1(01)) → ACTIVE(dbl1(active(01)))
MARK(quote(X)) → ACTIVE(quote(mark(X)))
MARK(sel1(dbl1(x0), y1)) → ACTIVE(sel1(active(dbl1(mark(x0))), mark(y1)))
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel1(y0, dbl1(x0))) → ACTIVE(sel1(mark(y0), active(dbl1(mark(x0)))))
MARK(sel1(01, y1)) → ACTIVE(sel1(active(01), mark(y1)))
MARK(sel1(y0, 01)) → ACTIVE(sel1(mark(y0), active(01)))
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(sel1(sel(x0, x1), y1)) → ACTIVE(sel1(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(dbl1(s1(x0))) → ACTIVE(dbl1(active(s1(mark(x0)))))
MARK(sel1(dbl(x0), y1)) → ACTIVE(sel1(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(cons(x0, x1), y1)) → ACTIVE(sel1(active(cons(x0, x1)), mark(y1)))
MARK(sel1(X1, X2)) → MARK(X2)
MARK(dbl1(X)) → MARK(X)
MARK(sel1(indx(x0, x1), y1)) → ACTIVE(sel1(active(indx(mark(x0), x1)), mark(y1)))
MARK(from(X)) → ACTIVE(from(X))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(dbl1(dbls(x0))) → ACTIVE(dbl1(active(dbls(mark(x0)))))
MARK(sel1(s(x0), y1)) → ACTIVE(sel1(active(s(x0)), mark(y1)))
MARK(sel1(y0, cons(x0, x1))) → ACTIVE(sel1(mark(y0), active(cons(x0, x1))))
MARK(sel(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(quote(X)) → ACTIVE(quote(mark(X))) at position [0] we obtained the following new rules:

MARK(quote(nil)) → ACTIVE(quote(active(nil)))
MARK(quote(s(x0))) → ACTIVE(quote(active(s(x0))))
MARK(quote(x0)) → ACTIVE(quote(x0))
MARK(quote(01)) → ACTIVE(quote(active(01)))
MARK(quote(sel(x0, x1))) → ACTIVE(quote(active(sel(mark(x0), mark(x1)))))
MARK(quote(dbl1(x0))) → ACTIVE(quote(active(dbl1(mark(x0)))))
MARK(quote(cons(x0, x1))) → ACTIVE(quote(active(cons(x0, x1))))
MARK(quote(from(x0))) → ACTIVE(quote(active(from(x0))))
MARK(quote(sel1(x0, x1))) → ACTIVE(quote(active(sel1(mark(x0), mark(x1)))))
MARK(quote(dbls(x0))) → ACTIVE(quote(active(dbls(mark(x0)))))
MARK(quote(0)) → ACTIVE(quote(active(0)))
MARK(quote(dbl(x0))) → ACTIVE(quote(active(dbl(mark(x0)))))
MARK(quote(indx(x0, x1))) → ACTIVE(quote(active(indx(mark(x0), x1))))
MARK(quote(s1(x0))) → ACTIVE(quote(active(s1(mark(x0)))))
MARK(quote(quote(x0))) → ACTIVE(quote(active(quote(mark(x0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
QDP
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(quote(nil)) → ACTIVE(quote(active(nil)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl1(0)) → ACTIVE(dbl1(active(0)))
MARK(dbls(dbl1(x0))) → ACTIVE(dbls(active(dbl1(mark(x0)))))
MARK(quote(sel(x0, x1))) → ACTIVE(quote(active(sel(mark(x0), mark(x1)))))
MARK(sel1(y0, s1(x0))) → ACTIVE(sel1(mark(y0), active(s1(mark(x0)))))
MARK(dbl1(sel1(x0, x1))) → ACTIVE(dbl1(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(dbl(x0))) → ACTIVE(dbl1(active(dbl(mark(x0)))))
MARK(quote(X)) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(sel1(x0, y1)) → ACTIVE(sel1(x0, mark(y1)))
MARK(dbls(01)) → ACTIVE(dbls(active(01)))
MARK(sel1(nil, y1)) → ACTIVE(sel1(active(nil), mark(y1)))
MARK(sel1(y0, nil)) → ACTIVE(sel1(mark(y0), active(nil)))
MARK(dbl(X)) → MARK(X)
MARK(sel1(y0, sel(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(quote(sel1(x0, x1))) → ACTIVE(quote(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(quote(x0))) → ACTIVE(dbl1(active(quote(mark(x0)))))
MARK(dbl1(from(x0))) → ACTIVE(dbl1(active(from(x0))))
MARK(sel1(y0, quote(x0))) → ACTIVE(sel1(mark(y0), active(quote(mark(x0)))))
MARK(quote(dbl(x0))) → ACTIVE(quote(active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel1(y0, dbls(x0))) → ACTIVE(sel1(mark(y0), active(dbls(mark(x0)))))
MARK(dbl1(x0)) → ACTIVE(dbl1(x0))
MARK(sel1(y0, from(x0))) → ACTIVE(sel1(mark(y0), active(from(x0))))
MARK(dbls(s1(x0))) → ACTIVE(dbls(active(s1(mark(x0)))))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(sel1(y0, dbl(x0))) → ACTIVE(sel1(mark(y0), active(dbl(mark(x0)))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(sel1(y0, indx(x0, x1))) → ACTIVE(sel1(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl1(indx(x0, x1))) → ACTIVE(dbl1(active(indx(mark(x0), x1))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(sel1(dbls(x0), y1)) → ACTIVE(sel1(active(dbls(mark(x0))), mark(y1)))
MARK(dbl1(dbl1(x0))) → ACTIVE(dbl1(active(dbl1(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(sel1(from(x0), y1)) → ACTIVE(sel1(active(from(x0)), mark(y1)))
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
MARK(sel1(0, y1)) → ACTIVE(sel1(active(0), mark(y1)))
MARK(sel1(y0, 0)) → ACTIVE(sel1(mark(y0), active(0)))
MARK(quote(indx(x0, x1))) → ACTIVE(quote(active(indx(mark(x0), x1))))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbl1(sel(x0, x1))) → ACTIVE(dbl1(active(sel(mark(x0), mark(x1)))))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(quote(cons(x0, x1))) → ACTIVE(quote(active(cons(x0, x1))))
MARK(sel1(dbl1(x0), y1)) → ACTIVE(sel1(active(dbl1(mark(x0))), mark(y1)))
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel1(y0, dbl1(x0))) → ACTIVE(sel1(mark(y0), active(dbl1(mark(x0)))))
MARK(sel1(01, y1)) → ACTIVE(sel1(active(01), mark(y1)))
MARK(sel1(y0, 01)) → ACTIVE(sel1(mark(y0), active(01)))
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(quote(0)) → ACTIVE(quote(active(0)))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel1(dbl(x0), y1)) → ACTIVE(sel1(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(cons(x0, x1), y1)) → ACTIVE(sel1(active(cons(x0, x1)), mark(y1)))
MARK(sel1(indx(x0, x1), y1)) → ACTIVE(sel1(active(indx(mark(x0), x1)), mark(y1)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(dbl1(dbls(x0))) → ACTIVE(dbl1(active(dbls(mark(x0)))))
MARK(sel1(s(x0), y1)) → ACTIVE(sel1(active(s(x0)), mark(y1)))
MARK(sel(X1, X2)) → MARK(X2)
MARK(quote(dbl1(x0))) → ACTIVE(quote(active(dbl1(mark(x0)))))
MARK(sel1(quote(x0), y1)) → ACTIVE(sel1(active(quote(mark(x0))), mark(y1)))
MARK(dbl1(nil)) → ACTIVE(dbl1(active(nil)))
MARK(sel1(y0, s(x0))) → ACTIVE(sel1(mark(y0), active(s(x0))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(dbl1(s(x0))) → ACTIVE(dbl1(active(s(x0))))
MARK(sel1(y0, sel1(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(dbls(quote(x0))) → ACTIVE(dbls(active(quote(mark(x0)))))
MARK(sel1(s1(x0), y1)) → ACTIVE(sel1(active(s1(mark(x0))), mark(y1)))
MARK(sel1(y0, x1)) → ACTIVE(sel1(mark(y0), x1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(s1(X)) → MARK(X)
MARK(quote(from(x0))) → ACTIVE(quote(active(from(x0))))
MARK(sel1(sel1(x0, x1), y1)) → ACTIVE(sel1(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(sel1(X1, X2)) → MARK(X1)
MARK(quote(dbls(x0))) → ACTIVE(quote(active(dbls(mark(x0)))))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(dbls(sel1(x0, x1))) → ACTIVE(dbls(active(sel1(mark(x0), mark(x1)))))
MARK(quote(s(x0))) → ACTIVE(quote(active(s(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
MARK(quote(x0)) → ACTIVE(quote(x0))
MARK(quote(01)) → ACTIVE(quote(active(01)))
MARK(dbls(X)) → MARK(X)
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
MARK(dbl1(cons(x0, x1))) → ACTIVE(dbl1(active(cons(x0, x1))))
MARK(dbl1(01)) → ACTIVE(dbl1(active(01)))
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(sel1(sel(x0, x1), y1)) → ACTIVE(sel1(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(dbl1(s1(x0))) → ACTIVE(dbl1(active(s1(mark(x0)))))
MARK(sel1(X1, X2)) → MARK(X2)
MARK(quote(s1(x0))) → ACTIVE(quote(active(s1(mark(x0)))))
MARK(dbl1(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(X))
MARK(quote(quote(x0))) → ACTIVE(quote(active(quote(mark(x0)))))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(sel1(y0, cons(x0, x1))) → ACTIVE(sel1(mark(y0), active(cons(x0, x1))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2))) at position [0] we obtained the following new rules:

MARK(sel(quote(x0), y1)) → ACTIVE(sel(active(quote(mark(x0))), mark(y1)))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(y0, sel1(x0, x1))) → ACTIVE(sel(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(sel(s1(x0), y1)) → ACTIVE(sel(active(s1(mark(x0))), mark(y1)))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(sel(y0, quote(x0))) → ACTIVE(sel(mark(y0), active(quote(mark(x0)))))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(y0, s1(x0))) → ACTIVE(sel(mark(y0), active(s1(mark(x0)))))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(sel(sel1(x0, x1), y1)) → ACTIVE(sel(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(sel(dbl1(x0), y1)) → ACTIVE(sel(active(dbl1(mark(x0))), mark(y1)))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, 01)) → ACTIVE(sel(mark(y0), active(01)))
MARK(sel(01, y1)) → ACTIVE(sel(active(01), mark(y1)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(y0, dbl1(x0))) → ACTIVE(sel(mark(y0), active(dbl1(mark(x0)))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(sel(quote(x0), y1)) → ACTIVE(sel(active(quote(mark(x0))), mark(y1)))
MARK(quote(nil)) → ACTIVE(quote(active(nil)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl1(0)) → ACTIVE(dbl1(active(0)))
MARK(dbls(dbl1(x0))) → ACTIVE(dbls(active(dbl1(mark(x0)))))
MARK(sel(y0, sel1(x0, x1))) → ACTIVE(sel(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(quote(sel(x0, x1))) → ACTIVE(quote(active(sel(mark(x0), mark(x1)))))
MARK(sel(s1(x0), y1)) → ACTIVE(sel(active(s1(mark(x0))), mark(y1)))
MARK(sel1(y0, s1(x0))) → ACTIVE(sel1(mark(y0), active(s1(mark(x0)))))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl1(sel1(x0, x1))) → ACTIVE(dbl1(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(dbl(x0))) → ACTIVE(dbl1(active(dbl(mark(x0)))))
MARK(quote(X)) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(sel1(x0, y1)) → ACTIVE(sel1(x0, mark(y1)))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(y0, nil)) → ACTIVE(sel1(mark(y0), active(nil)))
MARK(sel1(nil, y1)) → ACTIVE(sel1(active(nil), mark(y1)))
MARK(dbls(01)) → ACTIVE(dbls(active(01)))
MARK(sel1(y0, sel(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(X)) → MARK(X)
MARK(sel(sel1(x0, x1), y1)) → ACTIVE(sel(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(dbl1(quote(x0))) → ACTIVE(dbl1(active(quote(mark(x0)))))
MARK(quote(sel1(x0, x1))) → ACTIVE(quote(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(from(x0))) → ACTIVE(dbl1(active(from(x0))))
MARK(sel1(y0, quote(x0))) → ACTIVE(sel1(mark(y0), active(quote(mark(x0)))))
MARK(quote(dbl(x0))) → ACTIVE(quote(active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel1(y0, dbls(x0))) → ACTIVE(sel1(mark(y0), active(dbls(mark(x0)))))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(dbl1(x0)) → ACTIVE(dbl1(x0))
MARK(sel1(y0, from(x0))) → ACTIVE(sel1(mark(y0), active(from(x0))))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(dbls(s1(x0))) → ACTIVE(dbls(active(s1(mark(x0)))))
MARK(sel1(y0, dbl(x0))) → ACTIVE(sel1(mark(y0), active(dbl(mark(x0)))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbl1(indx(x0, x1))) → ACTIVE(dbl1(active(indx(mark(x0), x1))))
MARK(sel1(y0, indx(x0, x1))) → ACTIVE(sel1(mark(y0), active(indx(mark(x0), x1))))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(sel1(dbls(x0), y1)) → ACTIVE(sel1(active(dbls(mark(x0))), mark(y1)))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(dbl1(dbl1(x0))) → ACTIVE(dbl1(active(dbl1(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(sel1(from(x0), y1)) → ACTIVE(sel1(active(from(x0)), mark(y1)))
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(sel(y0, quote(x0))) → ACTIVE(sel(mark(y0), active(quote(mark(x0)))))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
MARK(sel1(y0, 0)) → ACTIVE(sel1(mark(y0), active(0)))
MARK(sel1(0, y1)) → ACTIVE(sel1(active(0), mark(y1)))
MARK(quote(indx(x0, x1))) → ACTIVE(quote(active(indx(mark(x0), x1))))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(dbl1(sel(x0, x1))) → ACTIVE(dbl1(active(sel(mark(x0), mark(x1)))))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(quote(cons(x0, x1))) → ACTIVE(quote(active(cons(x0, x1))))
MARK(sel(dbl1(x0), y1)) → ACTIVE(sel(active(dbl1(mark(x0))), mark(y1)))
MARK(sel1(y0, dbl1(x0))) → ACTIVE(sel1(mark(y0), active(dbl1(mark(x0)))))
MARK(sel1(dbl1(x0), y1)) → ACTIVE(sel1(active(dbl1(mark(x0))), mark(y1)))
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(sel1(y0, 01)) → ACTIVE(sel1(mark(y0), active(01)))
MARK(sel1(01, y1)) → ACTIVE(sel1(active(01), mark(y1)))
MARK(quote(0)) → ACTIVE(quote(active(0)))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel1(dbl(x0), y1)) → ACTIVE(sel1(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(cons(x0, x1), y1)) → ACTIVE(sel1(active(cons(x0, x1)), mark(y1)))
MARK(sel(01, y1)) → ACTIVE(sel(active(01), mark(y1)))
MARK(sel(y0, 01)) → ACTIVE(sel(mark(y0), active(01)))
MARK(sel1(indx(x0, x1), y1)) → ACTIVE(sel1(active(indx(mark(x0), x1)), mark(y1)))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(dbl1(dbls(x0))) → ACTIVE(dbl1(active(dbls(mark(x0)))))
MARK(sel1(s(x0), y1)) → ACTIVE(sel1(active(s(x0)), mark(y1)))
MARK(sel(X1, X2)) → MARK(X2)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(quote(dbl1(x0))) → ACTIVE(quote(active(dbl1(mark(x0)))))
MARK(sel1(quote(x0), y1)) → ACTIVE(sel1(active(quote(mark(x0))), mark(y1)))
MARK(dbl1(nil)) → ACTIVE(dbl1(active(nil)))
MARK(sel1(y0, s(x0))) → ACTIVE(sel1(mark(y0), active(s(x0))))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(dbl1(s(x0))) → ACTIVE(dbl1(active(s(x0))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(sel1(y0, sel1(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(sel1(s1(x0), y1)) → ACTIVE(sel1(active(s1(mark(x0))), mark(y1)))
MARK(dbls(quote(x0))) → ACTIVE(dbls(active(quote(mark(x0)))))
MARK(sel1(y0, x1)) → ACTIVE(sel1(mark(y0), x1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(s1(X)) → MARK(X)
MARK(quote(from(x0))) → ACTIVE(quote(active(from(x0))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel1(sel1(x0, x1), y1)) → ACTIVE(sel1(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
MARK(sel1(X1, X2)) → MARK(X1)
MARK(quote(dbls(x0))) → ACTIVE(quote(active(dbls(mark(x0)))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbls(sel1(x0, x1))) → ACTIVE(dbls(active(sel1(mark(x0), mark(x1)))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(quote(s(x0))) → ACTIVE(quote(active(s(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
MARK(quote(x0)) → ACTIVE(quote(x0))
MARK(quote(01)) → ACTIVE(quote(active(01)))
MARK(dbls(X)) → MARK(X)
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
MARK(dbl1(cons(x0, x1))) → ACTIVE(dbl1(active(cons(x0, x1))))
MARK(sel(y0, s1(x0))) → ACTIVE(sel(mark(y0), active(s1(mark(x0)))))
MARK(dbl1(01)) → ACTIVE(dbl1(active(01)))
MARK(dbl(X)) → ACTIVE(dbl(mark(X)))
MARK(sel1(sel(x0, x1), y1)) → ACTIVE(sel1(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(dbl1(s1(x0))) → ACTIVE(dbl1(active(s1(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel1(X1, X2)) → MARK(X2)
MARK(dbl1(X)) → MARK(X)
MARK(quote(s1(x0))) → ACTIVE(quote(active(s1(mark(x0)))))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(quote(quote(x0))) → ACTIVE(quote(active(quote(mark(x0)))))
MARK(sel(y0, dbl1(x0))) → ACTIVE(sel(mark(y0), active(dbl1(mark(x0)))))
MARK(sel1(y0, cons(x0, x1))) → ACTIVE(sel1(mark(y0), active(cons(x0, x1))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(dbl(X)) → ACTIVE(dbl(mark(X))) at position [0] we obtained the following new rules:

MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(dbl(0)) → ACTIVE(dbl(active(0)))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(quote(x0))) → ACTIVE(dbl(active(quote(mark(x0)))))
MARK(dbl(sel1(x0, x1))) → ACTIVE(dbl(active(sel1(mark(x0), mark(x1)))))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(dbl(s1(x0))) → ACTIVE(dbl(active(s1(mark(x0)))))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(dbl(dbl1(x0))) → ACTIVE(dbl(active(dbl1(mark(x0)))))
MARK(dbl(01)) → ACTIVE(dbl(active(01)))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
QDP
                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(sel(quote(x0), y1)) → ACTIVE(sel(active(quote(mark(x0))), mark(y1)))
MARK(quote(nil)) → ACTIVE(quote(active(nil)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl1(0)) → ACTIVE(dbl1(active(0)))
MARK(dbls(dbl1(x0))) → ACTIVE(dbls(active(dbl1(mark(x0)))))
MARK(quote(sel(x0, x1))) → ACTIVE(quote(active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, sel1(x0, x1))) → ACTIVE(sel(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(sel(s1(x0), y1)) → ACTIVE(sel(active(s1(mark(x0))), mark(y1)))
MARK(sel1(y0, s1(x0))) → ACTIVE(sel1(mark(y0), active(s1(mark(x0)))))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl1(sel1(x0, x1))) → ACTIVE(dbl1(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(dbl(x0))) → ACTIVE(dbl1(active(dbl(mark(x0)))))
MARK(quote(X)) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(sel1(x0, y1)) → ACTIVE(sel1(x0, mark(y1)))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbls(01)) → ACTIVE(dbls(active(01)))
MARK(sel1(nil, y1)) → ACTIVE(sel1(active(nil), mark(y1)))
MARK(sel1(y0, nil)) → ACTIVE(sel1(mark(y0), active(nil)))
MARK(dbl(X)) → MARK(X)
MARK(sel1(y0, sel(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(sel(sel1(x0, x1), y1)) → ACTIVE(sel(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(dbl(sel1(x0, x1))) → ACTIVE(dbl(active(sel1(mark(x0), mark(x1)))))
MARK(quote(sel1(x0, x1))) → ACTIVE(quote(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(quote(x0))) → ACTIVE(dbl1(active(quote(mark(x0)))))
MARK(dbl1(from(x0))) → ACTIVE(dbl1(active(from(x0))))
MARK(sel1(y0, quote(x0))) → ACTIVE(sel1(mark(y0), active(quote(mark(x0)))))
MARK(quote(dbl(x0))) → ACTIVE(quote(active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel1(y0, dbls(x0))) → ACTIVE(sel1(mark(y0), active(dbls(mark(x0)))))
MARK(dbl1(x0)) → ACTIVE(dbl1(x0))
MARK(sel1(y0, from(x0))) → ACTIVE(sel1(mark(y0), active(from(x0))))
MARK(dbls(s1(x0))) → ACTIVE(dbls(active(s1(mark(x0)))))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(sel1(y0, dbl(x0))) → ACTIVE(sel1(mark(y0), active(dbl(mark(x0)))))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbl(0)) → ACTIVE(dbl(active(0)))
MARK(sel1(y0, indx(x0, x1))) → ACTIVE(sel1(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl1(indx(x0, x1))) → ACTIVE(dbl1(active(indx(mark(x0), x1))))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(sel1(dbls(x0), y1)) → ACTIVE(sel1(active(dbls(mark(x0))), mark(y1)))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl1(dbl1(x0))) → ACTIVE(dbl1(active(dbl1(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(sel1(from(x0), y1)) → ACTIVE(sel1(active(from(x0)), mark(y1)))
MARK(dbl(s1(x0))) → ACTIVE(dbl(active(s1(mark(x0)))))
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(sel(y0, quote(x0))) → ACTIVE(sel(mark(y0), active(quote(mark(x0)))))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
MARK(sel1(0, y1)) → ACTIVE(sel1(active(0), mark(y1)))
MARK(sel1(y0, 0)) → ACTIVE(sel1(mark(y0), active(0)))
MARK(quote(indx(x0, x1))) → ACTIVE(quote(active(indx(mark(x0), x1))))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(dbl1(sel(x0, x1))) → ACTIVE(dbl1(active(sel(mark(x0), mark(x1)))))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(dbl(quote(x0))) → ACTIVE(dbl(active(quote(mark(x0)))))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(quote(cons(x0, x1))) → ACTIVE(quote(active(cons(x0, x1))))
MARK(sel(dbl1(x0), y1)) → ACTIVE(sel(active(dbl1(mark(x0))), mark(y1)))
MARK(sel1(dbl1(x0), y1)) → ACTIVE(sel1(active(dbl1(mark(x0))), mark(y1)))
MARK(sel1(y0, dbl1(x0))) → ACTIVE(sel1(mark(y0), active(dbl1(mark(x0)))))
MARK(sel1(01, y1)) → ACTIVE(sel1(active(01), mark(y1)))
MARK(sel1(y0, 01)) → ACTIVE(sel1(mark(y0), active(01)))
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(quote(0)) → ACTIVE(quote(active(0)))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel1(dbl(x0), y1)) → ACTIVE(sel1(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(cons(x0, x1), y1)) → ACTIVE(sel1(active(cons(x0, x1)), mark(y1)))
MARK(sel(y0, 01)) → ACTIVE(sel(mark(y0), active(01)))
MARK(sel(01, y1)) → ACTIVE(sel(active(01), mark(y1)))
MARK(sel1(indx(x0, x1), y1)) → ACTIVE(sel1(active(indx(mark(x0), x1)), mark(y1)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(dbl1(dbls(x0))) → ACTIVE(dbl1(active(dbls(mark(x0)))))
MARK(sel1(s(x0), y1)) → ACTIVE(sel1(active(s(x0)), mark(y1)))
MARK(sel(X1, X2)) → MARK(X2)
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(quote(dbl1(x0))) → ACTIVE(quote(active(dbl1(mark(x0)))))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(sel1(quote(x0), y1)) → ACTIVE(sel1(active(quote(mark(x0))), mark(y1)))
MARK(dbl1(nil)) → ACTIVE(dbl1(active(nil)))
MARK(sel1(y0, s(x0))) → ACTIVE(sel1(mark(y0), active(s(x0))))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(dbl1(s(x0))) → ACTIVE(dbl1(active(s(x0))))
MARK(sel1(y0, sel1(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(dbls(quote(x0))) → ACTIVE(dbls(active(quote(mark(x0)))))
MARK(sel1(s1(x0), y1)) → ACTIVE(sel1(active(s1(mark(x0))), mark(y1)))
MARK(sel1(y0, x1)) → ACTIVE(sel1(mark(y0), x1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(s1(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(quote(from(x0))) → ACTIVE(quote(active(from(x0))))
MARK(sel1(sel1(x0, x1), y1)) → ACTIVE(sel1(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
MARK(sel1(X1, X2)) → MARK(X1)
MARK(quote(dbls(x0))) → ACTIVE(quote(active(dbls(mark(x0)))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X))))
MARK(dbl(01)) → ACTIVE(dbl(active(01)))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbls(sel1(x0, x1))) → ACTIVE(dbls(active(sel1(mark(x0), mark(x1)))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(quote(s(x0))) → ACTIVE(quote(active(s(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
MARK(quote(x0)) → ACTIVE(quote(x0))
MARK(quote(01)) → ACTIVE(quote(active(01)))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(X)) → MARK(X)
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
MARK(dbl(dbl1(x0))) → ACTIVE(dbl(active(dbl1(mark(x0)))))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
MARK(dbl1(cons(x0, x1))) → ACTIVE(dbl1(active(cons(x0, x1))))
MARK(sel(y0, s1(x0))) → ACTIVE(sel(mark(y0), active(s1(mark(x0)))))
MARK(dbl1(01)) → ACTIVE(dbl1(active(01)))
MARK(sel1(sel(x0, x1), y1)) → ACTIVE(sel1(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(dbl1(s1(x0))) → ACTIVE(dbl1(active(s1(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel1(X1, X2)) → MARK(X2)
MARK(quote(s1(x0))) → ACTIVE(quote(active(s1(mark(x0)))))
MARK(dbl1(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(quote(quote(x0))) → ACTIVE(quote(active(quote(mark(x0)))))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(sel1(y0, cons(x0, x1))) → ACTIVE(sel1(mark(y0), active(cons(x0, x1))))
MARK(sel(y0, dbl1(x0))) → ACTIVE(sel(mark(y0), active(dbl1(mark(x0)))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVE(dbl(s(X))) → MARK(s(s(dbl(X)))) at position [0] we obtained the following new rules:

ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

MARK(sel(quote(x0), y1)) → ACTIVE(sel(active(quote(mark(x0))), mark(y1)))
MARK(quote(nil)) → ACTIVE(quote(active(nil)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl1(0)) → ACTIVE(dbl1(active(0)))
MARK(dbls(dbl1(x0))) → ACTIVE(dbls(active(dbl1(mark(x0)))))
MARK(sel(y0, sel1(x0, x1))) → ACTIVE(sel(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(quote(sel(x0, x1))) → ACTIVE(quote(active(sel(mark(x0), mark(x1)))))
MARK(sel(s1(x0), y1)) → ACTIVE(sel(active(s1(mark(x0))), mark(y1)))
MARK(sel1(y0, s1(x0))) → ACTIVE(sel1(mark(y0), active(s1(mark(x0)))))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl1(sel1(x0, x1))) → ACTIVE(dbl1(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(dbl(x0))) → ACTIVE(dbl1(active(dbl(mark(x0)))))
MARK(quote(X)) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(sel1(x0, y1)) → ACTIVE(sel1(x0, mark(y1)))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(y0, nil)) → ACTIVE(sel1(mark(y0), active(nil)))
MARK(sel1(nil, y1)) → ACTIVE(sel1(active(nil), mark(y1)))
MARK(dbls(01)) → ACTIVE(dbls(active(01)))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(sel1(y0, sel(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(X)) → MARK(X)
MARK(sel(sel1(x0, x1), y1)) → ACTIVE(sel(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(dbl(sel1(x0, x1))) → ACTIVE(dbl(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(quote(x0))) → ACTIVE(dbl1(active(quote(mark(x0)))))
MARK(quote(sel1(x0, x1))) → ACTIVE(quote(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(from(x0))) → ACTIVE(dbl1(active(from(x0))))
MARK(sel1(y0, quote(x0))) → ACTIVE(sel1(mark(y0), active(quote(mark(x0)))))
MARK(quote(dbl(x0))) → ACTIVE(quote(active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel1(y0, dbls(x0))) → ACTIVE(sel1(mark(y0), active(dbls(mark(x0)))))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(dbl1(x0)) → ACTIVE(dbl1(x0))
MARK(sel1(y0, from(x0))) → ACTIVE(sel1(mark(y0), active(from(x0))))
MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2))
MARK(dbls(s1(x0))) → ACTIVE(dbls(active(s1(mark(x0)))))
MARK(sel1(y0, dbl(x0))) → ACTIVE(sel1(mark(y0), active(dbl(mark(x0)))))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbl(0)) → ACTIVE(dbl(active(0)))
MARK(dbl1(indx(x0, x1))) → ACTIVE(dbl1(active(indx(mark(x0), x1))))
MARK(sel1(y0, indx(x0, x1))) → ACTIVE(sel1(mark(y0), active(indx(mark(x0), x1))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(sel1(dbls(x0), y1)) → ACTIVE(sel1(active(dbls(mark(x0))), mark(y1)))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(dbl1(dbl1(x0))) → ACTIVE(dbl1(active(dbl1(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(sel1(from(x0), y1)) → ACTIVE(sel1(active(from(x0)), mark(y1)))
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(dbl(s1(x0))) → ACTIVE(dbl(active(s1(mark(x0)))))
MARK(sel(y0, quote(x0))) → ACTIVE(sel(mark(y0), active(quote(mark(x0)))))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
MARK(sel1(y0, 0)) → ACTIVE(sel1(mark(y0), active(0)))
MARK(sel1(0, y1)) → ACTIVE(sel1(active(0), mark(y1)))
MARK(quote(indx(x0, x1))) → ACTIVE(quote(active(indx(mark(x0), x1))))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(dbl1(sel(x0, x1))) → ACTIVE(dbl1(active(sel(mark(x0), mark(x1)))))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(dbl(quote(x0))) → ACTIVE(dbl(active(quote(mark(x0)))))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(quote(cons(x0, x1))) → ACTIVE(quote(active(cons(x0, x1))))
MARK(sel(dbl1(x0), y1)) → ACTIVE(sel(active(dbl1(mark(x0))), mark(y1)))
MARK(sel1(y0, dbl1(x0))) → ACTIVE(sel1(mark(y0), active(dbl1(mark(x0)))))
MARK(sel1(dbl1(x0), y1)) → ACTIVE(sel1(active(dbl1(mark(x0))), mark(y1)))
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(sel1(y0, 01)) → ACTIVE(sel1(mark(y0), active(01)))
MARK(sel1(01, y1)) → ACTIVE(sel1(active(01), mark(y1)))
MARK(quote(0)) → ACTIVE(quote(active(0)))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel1(dbl(x0), y1)) → ACTIVE(sel1(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(cons(x0, x1), y1)) → ACTIVE(sel1(active(cons(x0, x1)), mark(y1)))
MARK(sel(01, y1)) → ACTIVE(sel(active(01), mark(y1)))
MARK(sel(y0, 01)) → ACTIVE(sel(mark(y0), active(01)))
MARK(sel1(indx(x0, x1), y1)) → ACTIVE(sel1(active(indx(mark(x0), x1)), mark(y1)))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
MARK(dbl1(dbls(x0))) → ACTIVE(dbl1(active(dbls(mark(x0)))))
MARK(sel1(s(x0), y1)) → ACTIVE(sel1(active(s(x0)), mark(y1)))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(quote(dbl1(x0))) → ACTIVE(quote(active(dbl1(mark(x0)))))
MARK(sel1(quote(x0), y1)) → ACTIVE(sel1(active(quote(mark(x0))), mark(y1)))
MARK(dbl1(nil)) → ACTIVE(dbl1(active(nil)))
MARK(sel1(y0, s(x0))) → ACTIVE(sel1(mark(y0), active(s(x0))))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(dbl1(s(x0))) → ACTIVE(dbl1(active(s(x0))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
MARK(sel1(y0, sel1(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(sel1(s1(x0), y1)) → ACTIVE(sel1(active(s1(mark(x0))), mark(y1)))
MARK(dbls(quote(x0))) → ACTIVE(dbls(active(quote(mark(x0)))))
MARK(sel1(y0, x1)) → ACTIVE(sel1(mark(y0), x1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(s1(X)) → MARK(X)
MARK(quote(from(x0))) → ACTIVE(quote(active(from(x0))))
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel1(sel1(x0, x1), y1)) → ACTIVE(sel1(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
MARK(sel1(X1, X2)) → MARK(X1)
MARK(quote(dbls(x0))) → ACTIVE(quote(active(dbls(mark(x0)))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(01)) → ACTIVE(dbl(active(01)))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(dbls(sel1(x0, x1))) → ACTIVE(dbls(active(sel1(mark(x0), mark(x1)))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(quote(s(x0))) → ACTIVE(quote(active(s(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
MARK(quote(x0)) → ACTIVE(quote(x0))
MARK(quote(01)) → ACTIVE(quote(active(01)))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(X)) → MARK(X)
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
MARK(dbl(dbl1(x0))) → ACTIVE(dbl(active(dbl1(mark(x0)))))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
MARK(dbl1(cons(x0, x1))) → ACTIVE(dbl1(active(cons(x0, x1))))
MARK(sel(y0, s1(x0))) → ACTIVE(sel(mark(y0), active(s1(mark(x0)))))
MARK(dbl1(01)) → ACTIVE(dbl1(active(01)))
MARK(sel1(sel(x0, x1), y1)) → ACTIVE(sel1(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(dbl1(s1(x0))) → ACTIVE(dbl1(active(s1(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel1(X1, X2)) → MARK(X2)
MARK(dbl1(X)) → MARK(X)
MARK(quote(s1(x0))) → ACTIVE(quote(active(s1(mark(x0)))))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(from(X)) → ACTIVE(from(X))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(quote(quote(x0))) → ACTIVE(quote(active(quote(mark(x0)))))
MARK(sel(y0, dbl1(x0))) → ACTIVE(sel(mark(y0), active(dbl1(mark(x0)))))
MARK(sel1(y0, cons(x0, x1))) → ACTIVE(sel1(mark(y0), active(cons(x0, x1))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(indx(X1, X2)) → ACTIVE(indx(mark(X1), X2)) at position [0] we obtained the following new rules:

MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(indx(quote(x0), y1)) → ACTIVE(indx(active(quote(mark(x0))), y1))
MARK(indx(s1(x0), y1)) → ACTIVE(indx(active(s1(mark(x0))), y1))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
MARK(indx(dbl1(x0), y1)) → ACTIVE(indx(active(dbl1(mark(x0))), y1))
MARK(indx(sel1(x0, x1), y1)) → ACTIVE(indx(active(sel1(mark(x0), mark(x1))), y1))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(indx(01, y1)) → ACTIVE(indx(active(01), y1))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(sel(quote(x0), y1)) → ACTIVE(sel(active(quote(mark(x0))), mark(y1)))
MARK(quote(nil)) → ACTIVE(quote(active(nil)))
MARK(indx(X1, X2)) → MARK(X1)
MARK(dbl1(0)) → ACTIVE(dbl1(active(0)))
MARK(dbls(dbl1(x0))) → ACTIVE(dbls(active(dbl1(mark(x0)))))
MARK(quote(sel(x0, x1))) → ACTIVE(quote(active(sel(mark(x0), mark(x1)))))
MARK(sel(y0, sel1(x0, x1))) → ACTIVE(sel(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(sel(s1(x0), y1)) → ACTIVE(sel(active(s1(mark(x0))), mark(y1)))
MARK(sel1(y0, s1(x0))) → ACTIVE(sel1(mark(y0), active(s1(mark(x0)))))
MARK(sel(y0, indx(x0, x1))) → ACTIVE(sel(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl1(sel1(x0, x1))) → ACTIVE(dbl1(active(sel1(mark(x0), mark(x1)))))
MARK(indx(dbl(x0), y1)) → ACTIVE(indx(active(dbl(mark(x0))), y1))
MARK(dbl1(dbl(x0))) → ACTIVE(dbl1(active(dbl(mark(x0)))))
MARK(quote(X)) → MARK(X)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(indx(x0, x1)) → ACTIVE(indx(x0, x1))
MARK(sel1(x0, y1)) → ACTIVE(sel1(x0, mark(y1)))
MARK(indx(from(x0), y1)) → ACTIVE(indx(active(from(x0)), y1))
MARK(sel(dbl(x0), y1)) → ACTIVE(sel(active(dbl(mark(x0))), mark(y1)))
MARK(dbl(x0)) → ACTIVE(dbl(x0))
MARK(dbl(s(x0))) → ACTIVE(dbl(active(s(x0))))
MARK(dbls(01)) → ACTIVE(dbls(active(01)))
MARK(sel1(nil, y1)) → ACTIVE(sel1(active(nil), mark(y1)))
MARK(sel1(y0, nil)) → ACTIVE(sel1(mark(y0), active(nil)))
MARK(dbl(X)) → MARK(X)
MARK(sel1(y0, sel(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(sel(sel1(x0, x1), y1)) → ACTIVE(sel(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(dbl(sel1(x0, x1))) → ACTIVE(dbl(active(sel1(mark(x0), mark(x1)))))
MARK(quote(sel1(x0, x1))) → ACTIVE(quote(active(sel1(mark(x0), mark(x1)))))
MARK(dbl1(quote(x0))) → ACTIVE(dbl1(active(quote(mark(x0)))))
MARK(dbl1(from(x0))) → ACTIVE(dbl1(active(from(x0))))
MARK(sel1(y0, quote(x0))) → ACTIVE(sel1(mark(y0), active(quote(mark(x0)))))
MARK(quote(dbl(x0))) → ACTIVE(quote(active(dbl(mark(x0)))))
ACTIVE(dbls(cons(y0, mark(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(dbl(from(x0))) → ACTIVE(dbl(active(from(x0))))
MARK(dbls(sel(x0, x1))) → ACTIVE(dbls(active(sel(mark(x0), mark(x1)))))
MARK(sel1(y0, dbls(x0))) → ACTIVE(sel1(mark(y0), active(dbls(mark(x0)))))
MARK(dbl1(x0)) → ACTIVE(dbl1(x0))
MARK(sel1(y0, from(x0))) → ACTIVE(sel1(mark(y0), active(from(x0))))
MARK(dbls(s1(x0))) → ACTIVE(dbls(active(s1(mark(x0)))))
MARK(sel1(y0, dbl(x0))) → ACTIVE(sel1(mark(y0), active(dbl(mark(x0)))))
MARK(dbl(indx(x0, x1))) → ACTIVE(dbl(active(indx(mark(x0), x1))))
MARK(dbls(from(x0))) → ACTIVE(dbls(active(from(x0))))
MARK(dbl(0)) → ACTIVE(dbl(active(0)))
MARK(sel1(y0, indx(x0, x1))) → ACTIVE(sel1(mark(y0), active(indx(mark(x0), x1))))
MARK(dbl1(indx(x0, x1))) → ACTIVE(dbl1(active(indx(mark(x0), x1))))
ACTIVE(dbl(s(active(x0)))) → MARK(s(s(dbl(x0))))
MARK(indx(quote(x0), y1)) → ACTIVE(indx(active(quote(mark(x0))), y1))
MARK(dbls(0)) → ACTIVE(dbls(active(0)))
MARK(sel1(dbls(x0), y1)) → ACTIVE(sel1(active(dbls(mark(x0))), mark(y1)))
MARK(sel(y0, dbls(x0))) → ACTIVE(sel(mark(y0), active(dbls(mark(x0)))))
MARK(dbl1(dbl1(x0))) → ACTIVE(dbl1(active(dbl1(mark(x0)))))
MARK(dbls(x0)) → ACTIVE(dbls(x0))
MARK(sel1(from(x0), y1)) → ACTIVE(sel1(active(from(x0)), mark(y1)))
MARK(dbl(s1(x0))) → ACTIVE(dbl(active(s1(mark(x0)))))
ACTIVE(indx(cons(X, Y), Z)) → MARK(cons(sel(X, Z), indx(Y, Z)))
MARK(indx(dbls(x0), y1)) → ACTIVE(indx(active(dbls(mark(x0))), y1))
MARK(sel(y0, quote(x0))) → ACTIVE(sel(mark(y0), active(quote(mark(x0)))))
MARK(dbls(nil)) → ACTIVE(dbls(active(nil)))
MARK(sel1(0, y1)) → ACTIVE(sel1(active(0), mark(y1)))
MARK(sel1(y0, 0)) → ACTIVE(sel1(mark(y0), active(0)))
MARK(quote(indx(x0, x1))) → ACTIVE(quote(active(indx(mark(x0), x1))))
ACTIVE(dbls(cons(y0, active(x0)))) → MARK(cons(dbl(y0), dbls(x0)))
MARK(sel(0, y1)) → ACTIVE(sel(active(0), mark(y1)))
MARK(sel(y0, 0)) → ACTIVE(sel(mark(y0), active(0)))
MARK(dbl1(sel(x0, x1))) → ACTIVE(dbl1(active(sel(mark(x0), mark(x1)))))
ACTIVE(dbls(cons(mark(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(sel(sel(x0, x1), y1)) → ACTIVE(sel(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(dbl(quote(x0))) → ACTIVE(dbl(active(quote(mark(x0)))))
MARK(sel(indx(x0, x1), y1)) → ACTIVE(sel(active(indx(mark(x0), x1)), mark(y1)))
MARK(quote(cons(x0, x1))) → ACTIVE(quote(active(cons(x0, x1))))
MARK(indx(0, y1)) → ACTIVE(indx(active(0), y1))
MARK(sel(dbl1(x0), y1)) → ACTIVE(sel(active(dbl1(mark(x0))), mark(y1)))
MARK(sel1(dbl1(x0), y1)) → ACTIVE(sel1(active(dbl1(mark(x0))), mark(y1)))
MARK(sel1(y0, dbl1(x0))) → ACTIVE(sel1(mark(y0), active(dbl1(mark(x0)))))
MARK(sel1(01, y1)) → ACTIVE(sel1(active(01), mark(y1)))
MARK(sel1(y0, 01)) → ACTIVE(sel1(mark(y0), active(01)))
ACTIVE(sel1(0, cons(X, Y))) → MARK(X)
MARK(quote(0)) → ACTIVE(quote(active(0)))
MARK(indx(cons(x0, x1), y1)) → ACTIVE(indx(active(cons(x0, x1)), y1))
MARK(sel(x0, y1)) → ACTIVE(sel(x0, mark(y1)))
MARK(dbls(dbls(x0))) → ACTIVE(dbls(active(dbls(mark(x0)))))
MARK(sel1(dbl(x0), y1)) → ACTIVE(sel1(active(dbl(mark(x0))), mark(y1)))
MARK(sel1(cons(x0, x1), y1)) → ACTIVE(sel1(active(cons(x0, x1)), mark(y1)))
MARK(sel(y0, 01)) → ACTIVE(sel(mark(y0), active(01)))
MARK(sel(01, y1)) → ACTIVE(sel(active(01), mark(y1)))
MARK(sel1(indx(x0, x1), y1)) → ACTIVE(sel1(active(indx(mark(x0), x1)), mark(y1)))
MARK(dbls(cons(x0, x1))) → ACTIVE(dbls(active(cons(x0, x1))))
ACTIVE(quote(s(X))) → MARK(s1(quote(X)))
MARK(dbl1(dbls(x0))) → ACTIVE(dbl1(active(dbls(mark(x0)))))
MARK(sel1(s(x0), y1)) → ACTIVE(sel1(active(s(x0)), mark(y1)))
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(dbl(s(mark(x0)))) → MARK(s(s(dbl(x0))))
MARK(sel(cons(x0, x1), y1)) → ACTIVE(sel(active(cons(x0, x1)), mark(y1)))
MARK(quote(dbl1(x0))) → ACTIVE(quote(active(dbl1(mark(x0)))))
MARK(sel(from(x0), y1)) → ACTIVE(sel(active(from(x0)), mark(y1)))
MARK(sel1(quote(x0), y1)) → ACTIVE(sel1(active(quote(mark(x0))), mark(y1)))
MARK(indx(nil, y1)) → ACTIVE(indx(active(nil), y1))
MARK(dbl1(nil)) → ACTIVE(dbl1(active(nil)))
MARK(sel1(y0, s(x0))) → ACTIVE(sel1(mark(y0), active(s(x0))))
MARK(indx(s(x0), y1)) → ACTIVE(indx(active(s(x0)), y1))
MARK(indx(indx(x0, x1), y1)) → ACTIVE(indx(active(indx(mark(x0), x1)), y1))
MARK(sel(s(x0), y1)) → ACTIVE(sel(active(s(x0)), mark(y1)))
MARK(dbl(sel(x0, x1))) → ACTIVE(dbl(active(sel(mark(x0), mark(x1)))))
ACTIVE(sel(s(X), cons(Y, Z))) → MARK(sel(X, Z))
MARK(dbl1(s(x0))) → ACTIVE(dbl1(active(s(x0))))
MARK(sel1(y0, sel1(x0, x1))) → ACTIVE(sel1(mark(y0), active(sel1(mark(x0), mark(x1)))))
MARK(dbls(quote(x0))) → ACTIVE(dbls(active(quote(mark(x0)))))
MARK(sel1(s1(x0), y1)) → ACTIVE(sel1(active(s1(mark(x0))), mark(y1)))
MARK(sel1(y0, x1)) → ACTIVE(sel1(mark(y0), x1))
ACTIVE(sel(0, cons(X, Y))) → MARK(X)
MARK(dbl(dbl(x0))) → ACTIVE(dbl(active(dbl(mark(x0)))))
ACTIVE(quote(dbl(X))) → MARK(dbl1(X))
MARK(dbls(indx(x0, x1))) → ACTIVE(dbls(active(indx(mark(x0), x1))))
ACTIVE(quote(sel(X, Y))) → MARK(sel1(X, Y))
MARK(sel(X1, X2)) → MARK(X1)
MARK(indx(sel(x0, x1), y1)) → ACTIVE(indx(active(sel(mark(x0), mark(x1))), y1))
MARK(indx(s1(x0), y1)) → ACTIVE(indx(active(s1(mark(x0))), y1))
MARK(s1(X)) → MARK(X)
MARK(dbl(cons(x0, x1))) → ACTIVE(dbl(active(cons(x0, x1))))
MARK(quote(from(x0))) → ACTIVE(quote(active(from(x0))))
MARK(sel1(sel1(x0, x1), y1)) → ACTIVE(sel1(active(sel1(mark(x0), mark(x1))), mark(y1)))
MARK(sel(y0, s(x0))) → ACTIVE(sel(mark(y0), active(s(x0))))
MARK(sel(y0, dbl(x0))) → ACTIVE(sel(mark(y0), active(dbl(mark(x0)))))
MARK(sel1(X1, X2)) → MARK(X1)
MARK(quote(dbls(x0))) → ACTIVE(quote(active(dbls(mark(x0)))))
MARK(sel(y0, sel(x0, x1))) → ACTIVE(sel(mark(y0), active(sel(mark(x0), mark(x1)))))
MARK(dbl(01)) → ACTIVE(dbl(active(01)))
MARK(sel(dbls(x0), y1)) → ACTIVE(sel(active(dbls(mark(x0))), mark(y1)))
MARK(indx(01, y1)) → ACTIVE(indx(active(01), y1))
MARK(dbls(sel1(x0, x1))) → ACTIVE(dbls(active(sel1(mark(x0), mark(x1)))))
MARK(sel(y0, cons(x0, x1))) → ACTIVE(sel(mark(y0), active(cons(x0, x1))))
MARK(quote(s(x0))) → ACTIVE(quote(active(s(x0))))
MARK(dbls(dbl(x0))) → ACTIVE(dbls(active(dbl(mark(x0)))))
MARK(quote(x0)) → ACTIVE(quote(x0))
MARK(quote(01)) → ACTIVE(quote(active(01)))
MARK(dbl(dbls(x0))) → ACTIVE(dbl(active(dbls(mark(x0)))))
MARK(dbls(X)) → MARK(X)
ACTIVE(dbls(cons(active(x0), y1))) → MARK(cons(dbl(x0), dbls(y1)))
MARK(dbls(s(x0))) → ACTIVE(dbls(active(s(x0))))
MARK(sel(y0, x1)) → ACTIVE(sel(mark(y0), x1))
MARK(indx(dbl1(x0), y1)) → ACTIVE(indx(active(dbl1(mark(x0))), y1))
MARK(dbl(nil)) → ACTIVE(dbl(active(nil)))
MARK(dbl(dbl1(x0))) → ACTIVE(dbl(active(dbl1(mark(x0)))))
ACTIVE(sel1(s(X), cons(Y, Z))) → MARK(sel1(X, Z))
MARK(dbl1(cons(x0, x1))) → ACTIVE(dbl1(active(cons(x0, x1))))
MARK(sel(y0, s1(x0))) → ACTIVE(sel(mark(y0), active(s1(mark(x0)))))
MARK(dbl1(01)) → ACTIVE(dbl1(active(01)))
MARK(indx(y0, mark(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(indx(y0, active(x1))) → ACTIVE(indx(mark(y0), x1))
MARK(sel1(sel(x0, x1), y1)) → ACTIVE(sel1(active(sel(mark(x0), mark(x1))), mark(y1)))
MARK(indx(sel1(x0, x1), y1)) → ACTIVE(indx(active(sel1(mark(x0), mark(x1))), y1))
MARK(dbl1(s1(x0))) → ACTIVE(dbl1(active(s1(mark(x0)))))
MARK(sel(y0, from(x0))) → ACTIVE(sel(mark(y0), active(from(x0))))
MARK(sel1(X1, X2)) → MARK(X2)
MARK(quote(s1(x0))) → ACTIVE(quote(active(s1(mark(x0)))))
MARK(dbl1(X)) → MARK(X)
MARK(from(X)) → ACTIVE(from(X))
MARK(sel(nil, y1)) → ACTIVE(sel(active(nil), mark(y1)))
MARK(sel(y0, nil)) → ACTIVE(sel(mark(y0), active(nil)))
MARK(quote(quote(x0))) → ACTIVE(quote(active(quote(mark(x0)))))
ACTIVE(dbl1(s(X))) → MARK(s1(s1(dbl1(X))))
MARK(sel1(y0, cons(x0, x1))) → ACTIVE(sel1(mark(y0), active(cons(x0, x1))))
MARK(sel(y0, dbl1(x0))) → ACTIVE(sel(mark(y0), active(dbl1(mark(x0)))))

The TRS R consists of the following rules:

active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
mark(dbl(X)) → active(dbl(mark(X)))
mark(0) → active(0)
mark(s(X)) → active(s(X))
mark(dbls(X)) → active(dbls(mark(X)))
mark(nil) → active(nil)
mark(cons(X1, X2)) → active(cons(X1, X2))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(indx(X1, X2)) → active(indx(mark(X1), X2))
mark(from(X)) → active(from(X))
mark(dbl1(X)) → active(dbl1(mark(X)))
mark(01) → active(01)
mark(s1(X)) → active(s1(mark(X)))
mark(sel1(X1, X2)) → active(sel1(mark(X1), mark(X2)))
mark(quote(X)) → active(quote(mark(X)))
dbl(mark(X)) → dbl(X)
dbl(active(X)) → dbl(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
dbls(mark(X)) → dbls(X)
dbls(active(X)) → dbls(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
indx(mark(X1), X2) → indx(X1, X2)
indx(X1, mark(X2)) → indx(X1, X2)
indx(active(X1), X2) → indx(X1, X2)
indx(X1, active(X2)) → indx(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)
dbl1(mark(X)) → dbl1(X)
dbl1(active(X)) → dbl1(X)
s1(mark(X)) → s1(X)
s1(active(X)) → s1(X)
sel1(mark(X1), X2) → sel1(X1, X2)
sel1(X1, mark(X2)) → sel1(X1, X2)
sel1(active(X1), X2) → sel1(X1, X2)
sel1(X1, active(X2)) → sel1(X1, X2)
quote(mark(X)) → quote(X)
quote(active(X)) → quote(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.