Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(length(cons(N, L))) → AND(isNat(N), isNatList(L))
PROPER(isNatList(X)) → PROPER(X)
PROPER(length(X)) → LENGTH(proper(X))
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(s(M), cons(N, IL))) → ISNAT(N)
ACTIVE(uLength(tt, L)) → LENGTH(L)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
UTAKE1(mark(X)) → UTAKE1(X)
PROPER(length(X)) → PROPER(X)
PROPER(isNatList(X)) → ISNATLIST(proper(X))
ACTIVE(take(s(M), cons(N, IL))) → AND(isNat(M), and(isNat(N), isNatIList(IL)))
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X3)
ACTIVE(s(X)) → ACTIVE(X)
UTAKE2(ok(X1), ok(X2), ok(X3), ok(X4)) → UTAKE2(X1, X2, X3, X4)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X4)
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(take(0, IL)) → UTAKE1(isNatIList(IL))
PROPER(uLength(X1, X2)) → ULENGTH(proper(X1), proper(X2))
ACTIVE(uLength(X1, X2)) → ACTIVE(X1)
TOP(mark(X)) → PROPER(X)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X1)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
UTAKE2(mark(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
ULENGTH(mark(X1), X2) → ULENGTH(X1, X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X2)
ACTIVE(take(s(M), cons(N, IL))) → AND(isNat(N), isNatIList(IL))
LENGTH(mark(X)) → LENGTH(X)
ACTIVE(take(s(M), cons(N, IL))) → UTAKE2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
ACTIVE(isNatList(take(N, IL))) → ISNATILIST(IL)
S(mark(X)) → S(X)
ACTIVE(uTake2(tt, M, N, IL)) → CONS(N, take(M, IL))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
ACTIVE(length(X)) → LENGTH(active(X))
PROPER(and(X1, X2)) → PROPER(X1)
ISNATLIST(ok(X)) → ISNATLIST(X)
ACTIVE(uLength(tt, L)) → S(length(L))
ACTIVE(isNatList(cons(N, L))) → ISNATLIST(L)
ACTIVE(isNat(s(N))) → ISNAT(N)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(uTake2(X1, X2, X3, X4)) → UTAKE2(active(X1), X2, X3, X4)
ACTIVE(uTake2(X1, X2, X3, X4)) → ACTIVE(X1)
AND(X1, mark(X2)) → AND(X1, X2)
ACTIVE(isNatList(take(N, IL))) → AND(isNat(N), isNatIList(IL))
ACTIVE(uTake1(X)) → ACTIVE(X)
ACTIVE(isNatIList(IL)) → ISNATLIST(IL)
ACTIVE(uTake1(X)) → UTAKE1(active(X))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(isNatList(take(N, IL))) → ISNAT(N)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(isNatIList(cons(N, IL))) → ISNAT(N)
ACTIVE(uTake2(tt, M, N, IL)) → TAKE(M, IL)
PROPER(uTake1(X)) → PROPER(X)
ISNATILIST(ok(X)) → ISNATILIST(X)
ACTIVE(isNatIList(cons(N, IL))) → ISNATILIST(IL)
PROPER(s(X)) → S(proper(X))
ULENGTH(ok(X1), ok(X2)) → ULENGTH(X1, X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(isNatList(cons(N, L))) → ISNAT(N)
ACTIVE(isNatIList(cons(N, IL))) → AND(isNat(N), isNatIList(IL))
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatIList(X)) → ISNATILIST(proper(X))
ACTIVE(take(0, IL)) → ISNATILIST(IL)
ACTIVE(and(X1, X2)) → ACTIVE(X2)
ACTIVE(length(cons(N, L))) → ULENGTH(and(isNat(N), isNatList(L)), L)
TAKE(mark(X1), X2) → TAKE(X1, X2)
PROPER(uLength(X1, X2)) → PROPER(X1)
PROPER(isNat(X)) → PROPER(X)
LENGTH(ok(X)) → LENGTH(X)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
UTAKE1(ok(X)) → UTAKE1(X)
ACTIVE(isNat(length(L))) → ISNATLIST(L)
AND(ok(X1), ok(X2)) → AND(X1, X2)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
ACTIVE(take(s(M), cons(N, IL))) → ISNATILIST(IL)
PROPER(take(X1, X2)) → PROPER(X2)
TOP(ok(X)) → TOP(active(X))
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(uTake2(X1, X2, X3, X4)) → UTAKE2(proper(X1), proper(X2), proper(X3), proper(X4))
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
PROPER(uLength(X1, X2)) → PROPER(X2)
ISNAT(ok(X)) → ISNAT(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(uLength(X1, X2)) → ULENGTH(active(X1), X2)
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ACTIVE(take(s(M), cons(N, IL))) → ISNAT(M)
ACTIVE(isNatList(cons(N, L))) → AND(isNat(N), isNatList(L))
ACTIVE(and(X1, X2)) → AND(X1, active(X2))
TAKE(X1, mark(X2)) → TAKE(X1, X2)
ACTIVE(length(cons(N, L))) → ISNAT(N)
PROPER(uTake1(X)) → UTAKE1(proper(X))
PROPER(take(X1, X2)) → PROPER(X1)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(s(X)) → S(active(X))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(length(cons(N, L))) → AND(isNat(N), isNatList(L))
PROPER(isNatList(X)) → PROPER(X)
PROPER(length(X)) → LENGTH(proper(X))
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(s(M), cons(N, IL))) → ISNAT(N)
ACTIVE(uLength(tt, L)) → LENGTH(L)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
UTAKE1(mark(X)) → UTAKE1(X)
PROPER(length(X)) → PROPER(X)
PROPER(isNatList(X)) → ISNATLIST(proper(X))
ACTIVE(take(s(M), cons(N, IL))) → AND(isNat(M), and(isNat(N), isNatIList(IL)))
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X3)
ACTIVE(s(X)) → ACTIVE(X)
UTAKE2(ok(X1), ok(X2), ok(X3), ok(X4)) → UTAKE2(X1, X2, X3, X4)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X4)
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(take(0, IL)) → UTAKE1(isNatIList(IL))
PROPER(uLength(X1, X2)) → ULENGTH(proper(X1), proper(X2))
ACTIVE(uLength(X1, X2)) → ACTIVE(X1)
TOP(mark(X)) → PROPER(X)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X1)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
UTAKE2(mark(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
ULENGTH(mark(X1), X2) → ULENGTH(X1, X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X2)
ACTIVE(take(s(M), cons(N, IL))) → AND(isNat(N), isNatIList(IL))
LENGTH(mark(X)) → LENGTH(X)
ACTIVE(take(s(M), cons(N, IL))) → UTAKE2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
ACTIVE(isNatList(take(N, IL))) → ISNATILIST(IL)
S(mark(X)) → S(X)
ACTIVE(uTake2(tt, M, N, IL)) → CONS(N, take(M, IL))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
ACTIVE(length(X)) → LENGTH(active(X))
PROPER(and(X1, X2)) → PROPER(X1)
ISNATLIST(ok(X)) → ISNATLIST(X)
ACTIVE(uLength(tt, L)) → S(length(L))
ACTIVE(isNatList(cons(N, L))) → ISNATLIST(L)
ACTIVE(isNat(s(N))) → ISNAT(N)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(uTake2(X1, X2, X3, X4)) → UTAKE2(active(X1), X2, X3, X4)
ACTIVE(uTake2(X1, X2, X3, X4)) → ACTIVE(X1)
AND(X1, mark(X2)) → AND(X1, X2)
ACTIVE(isNatList(take(N, IL))) → AND(isNat(N), isNatIList(IL))
ACTIVE(uTake1(X)) → ACTIVE(X)
ACTIVE(isNatIList(IL)) → ISNATLIST(IL)
ACTIVE(uTake1(X)) → UTAKE1(active(X))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(isNatList(take(N, IL))) → ISNAT(N)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(isNatIList(cons(N, IL))) → ISNAT(N)
ACTIVE(uTake2(tt, M, N, IL)) → TAKE(M, IL)
PROPER(uTake1(X)) → PROPER(X)
ISNATILIST(ok(X)) → ISNATILIST(X)
ACTIVE(isNatIList(cons(N, IL))) → ISNATILIST(IL)
PROPER(s(X)) → S(proper(X))
ULENGTH(ok(X1), ok(X2)) → ULENGTH(X1, X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(isNatList(cons(N, L))) → ISNAT(N)
ACTIVE(isNatIList(cons(N, IL))) → AND(isNat(N), isNatIList(IL))
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatIList(X)) → ISNATILIST(proper(X))
ACTIVE(take(0, IL)) → ISNATILIST(IL)
ACTIVE(and(X1, X2)) → ACTIVE(X2)
ACTIVE(length(cons(N, L))) → ULENGTH(and(isNat(N), isNatList(L)), L)
TAKE(mark(X1), X2) → TAKE(X1, X2)
PROPER(uLength(X1, X2)) → PROPER(X1)
PROPER(isNat(X)) → PROPER(X)
LENGTH(ok(X)) → LENGTH(X)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
UTAKE1(ok(X)) → UTAKE1(X)
ACTIVE(isNat(length(L))) → ISNATLIST(L)
AND(ok(X1), ok(X2)) → AND(X1, X2)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
ACTIVE(take(s(M), cons(N, IL))) → ISNATILIST(IL)
PROPER(take(X1, X2)) → PROPER(X2)
TOP(ok(X)) → TOP(active(X))
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(uTake2(X1, X2, X3, X4)) → UTAKE2(proper(X1), proper(X2), proper(X3), proper(X4))
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
PROPER(uLength(X1, X2)) → PROPER(X2)
ISNAT(ok(X)) → ISNAT(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(uLength(X1, X2)) → ULENGTH(active(X1), X2)
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ACTIVE(take(s(M), cons(N, IL))) → ISNAT(M)
ACTIVE(isNatList(cons(N, L))) → AND(isNat(N), isNatList(L))
ACTIVE(and(X1, X2)) → AND(X1, active(X2))
TAKE(X1, mark(X2)) → TAKE(X1, X2)
ACTIVE(length(cons(N, L))) → ISNAT(N)
PROPER(uTake1(X)) → UTAKE1(proper(X))
PROPER(take(X1, X2)) → PROPER(X1)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(s(X)) → S(active(X))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 14 SCCs with 52 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(ok(X)) → ISNAT(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(ok(X)) → ISNAT(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ISNAT(ok(X)) → ISNAT(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(ok(X)) → ISNATLIST(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(ok(X)) → ISNATLIST(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ISNATLIST(ok(X)) → ISNATLIST(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(ok(X)) → ISNATILIST(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(ok(X)) → ISNATILIST(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ISNATILIST(ok(X)) → ISNATILIST(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ULENGTH(mark(X1), X2) → ULENGTH(X1, X2)
ULENGTH(ok(X1), ok(X2)) → ULENGTH(X1, X2)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ULENGTH(mark(X1), X2) → ULENGTH(X1, X2)
ULENGTH(ok(X1), ok(X2)) → ULENGTH(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ULENGTH(mark(X1), X2) → ULENGTH(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- ULENGTH(ok(X1), ok(X2)) → ULENGTH(X1, X2)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
UTAKE2(ok(X1), ok(X2), ok(X3), ok(X4)) → UTAKE2(X1, X2, X3, X4)
UTAKE2(mark(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
UTAKE2(ok(X1), ok(X2), ok(X3), ok(X4)) → UTAKE2(X1, X2, X3, X4)
UTAKE2(mark(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- UTAKE2(ok(X1), ok(X2), ok(X3), ok(X4)) → UTAKE2(X1, X2, X3, X4)
The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 4 > 4
- UTAKE2(mark(X1), X2, X3, X4) → UTAKE2(X1, X2, X3, X4)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
UTAKE1(ok(X)) → UTAKE1(X)
UTAKE1(mark(X)) → UTAKE1(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
UTAKE1(ok(X)) → UTAKE1(X)
UTAKE1(mark(X)) → UTAKE1(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- UTAKE1(ok(X)) → UTAKE1(X)
The graph contains the following edges 1 > 1
- UTAKE1(mark(X)) → UTAKE1(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The graph contains the following edges 1 > 1, 2 > 2
- TAKE(mark(X1), X2) → TAKE(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- TAKE(X1, mark(X2)) → TAKE(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- CONS(mark(X1), X2) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- LENGTH(ok(X)) → LENGTH(X)
The graph contains the following edges 1 > 1
- LENGTH(mark(X)) → LENGTH(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S(ok(X)) → S(X)
S(mark(X)) → S(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
S(ok(X)) → S(X)
S(mark(X)) → S(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- S(ok(X)) → S(X)
The graph contains the following edges 1 > 1
- S(mark(X)) → S(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- AND(mark(X1), X2) → AND(X1, X2)
The graph contains the following edges 1 > 1, 2 >= 2
- AND(X1, mark(X2)) → AND(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
- AND(ok(X1), ok(X2)) → AND(X1, X2)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X4)
PROPER(isNat(X)) → PROPER(X)
PROPER(uLength(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(length(X)) → PROPER(X)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X1)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X3)
PROPER(isNatList(X)) → PROPER(X)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(uLength(X1, X2)) → PROPER(X1)
PROPER(uTake1(X)) → PROPER(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X4)
PROPER(isNat(X)) → PROPER(X)
PROPER(uLength(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(length(X)) → PROPER(X)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X1)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X3)
PROPER(isNatList(X)) → PROPER(X)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(uLength(X1, X2)) → PROPER(X1)
PROPER(uTake1(X)) → PROPER(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X4)
The graph contains the following edges 1 > 1
- PROPER(isNat(X)) → PROPER(X)
The graph contains the following edges 1 > 1
- PROPER(uLength(X1, X2)) → PROPER(X2)
The graph contains the following edges 1 > 1
- PROPER(and(X1, X2)) → PROPER(X1)
The graph contains the following edges 1 > 1
- PROPER(length(X)) → PROPER(X)
The graph contains the following edges 1 > 1
- PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X1)
The graph contains the following edges 1 > 1
- PROPER(isNatIList(X)) → PROPER(X)
The graph contains the following edges 1 > 1
- PROPER(and(X1, X2)) → PROPER(X2)
The graph contains the following edges 1 > 1
- PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X3)
The graph contains the following edges 1 > 1
- PROPER(isNatList(X)) → PROPER(X)
The graph contains the following edges 1 > 1
- PROPER(uTake2(X1, X2, X3, X4)) → PROPER(X2)
The graph contains the following edges 1 > 1
- PROPER(s(X)) → PROPER(X)
The graph contains the following edges 1 > 1
- PROPER(cons(X1, X2)) → PROPER(X1)
The graph contains the following edges 1 > 1
- PROPER(take(X1, X2)) → PROPER(X1)
The graph contains the following edges 1 > 1
- PROPER(cons(X1, X2)) → PROPER(X2)
The graph contains the following edges 1 > 1
- PROPER(take(X1, X2)) → PROPER(X2)
The graph contains the following edges 1 > 1
- PROPER(uLength(X1, X2)) → PROPER(X1)
The graph contains the following edges 1 > 1
- PROPER(uTake1(X)) → PROPER(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(uTake1(X)) → ACTIVE(X)
ACTIVE(uTake2(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X2)
ACTIVE(uLength(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(length(X)) → ACTIVE(X)
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(uTake1(X)) → ACTIVE(X)
ACTIVE(and(X1, X2)) → ACTIVE(X2)
ACTIVE(uTake2(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(uLength(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(length(X)) → ACTIVE(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ACTIVE(uTake1(X)) → ACTIVE(X)
The graph contains the following edges 1 > 1
- ACTIVE(uTake2(X1, X2, X3, X4)) → ACTIVE(X1)
The graph contains the following edges 1 > 1
- ACTIVE(and(X1, X2)) → ACTIVE(X2)
The graph contains the following edges 1 > 1
- ACTIVE(uLength(X1, X2)) → ACTIVE(X1)
The graph contains the following edges 1 > 1
- ACTIVE(take(X1, X2)) → ACTIVE(X2)
The graph contains the following edges 1 > 1
- ACTIVE(s(X)) → ACTIVE(X)
The graph contains the following edges 1 > 1
- ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The graph contains the following edges 1 > 1
- ACTIVE(take(X1, X2)) → ACTIVE(X1)
The graph contains the following edges 1 > 1
- ACTIVE(and(X1, X2)) → ACTIVE(X1)
The graph contains the following edges 1 > 1
- ACTIVE(length(X)) → ACTIVE(X)
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
Q DP problem:
The TRS P consists of the following rules:
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
uTake1(mark(X)) → mark(uTake1(X))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
isNatList(ok(X)) → ok(isNatList(X))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
uTake1(ok(X)) → ok(uTake1(X))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = 2·x1
POL(active(x1)) = 2·x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = 2·x1
POL(proper(x1)) = x1
POL(s(x1)) = 2·x1
POL(take(x1, x2)) = 2·x1 + 2·x2
POL(tt) = 0
POL(uLength(x1, x2)) = 2·x1 + 2·x2
POL(uTake1(x1)) = x1
POL(uTake2(x1, x2, x3, x4)) = x1 + x2 + 2·x3 + 2·x4
POL(zeros) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(mark(X)) → TOP(proper(X)) at position [0] we obtained the following new rules:
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(mark(tt)) → TOP(ok(tt))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(mark(tt)) → TOP(ok(tt))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(X)) → TOP(active(X))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(ok(X)) → TOP(active(X)) at position [0] we obtained the following new rules:
TOP(ok(isNat(length(x0)))) → TOP(mark(isNatList(x0)))
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(ok(uTake1(tt))) → TOP(mark(nil))
TOP(ok(take(0, x0))) → TOP(mark(uTake1(isNatIList(x0))))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(ok(isNatList(nil))) → TOP(mark(tt))
TOP(ok(isNat(0))) → TOP(mark(tt))
TOP(ok(isNatIList(zeros))) → TOP(mark(tt))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(uTake2(and(isNat(x0), and(isNat(x1), isNatIList(x2))), x0, x1, x2)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(uLength(and(isNat(x0), isNatList(x1)), x1)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(isNat(length(x0)))) → TOP(mark(isNatList(x0)))
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(ok(uTake1(tt))) → TOP(mark(nil))
TOP(ok(take(0, x0))) → TOP(mark(uTake1(isNatIList(x0))))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(tt)) → TOP(ok(tt))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(nil)) → TOP(ok(nil))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(ok(isNatList(nil))) → TOP(mark(tt))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(isNat(0))) → TOP(mark(tt))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(isNatIList(zeros))) → TOP(mark(tt))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(uTake2(and(isNat(x0), and(isNat(x1), isNatIList(x2))), x0, x1, x2)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(uLength(and(isNat(x0), isNatList(x1)), x1)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 7 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(isNat(length(x0)))) → TOP(mark(isNatList(x0)))
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(ok(take(0, x0))) → TOP(mark(uTake1(isNatIList(x0))))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(uTake2(and(isNat(x0), and(isNat(x1), isNatIList(x2))), x0, x1, x2)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(uLength(and(isNat(x0), isNatList(x1)), x1)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(take(0, x0))) → TOP(mark(uTake1(isNatIList(x0))))
The remaining pairs can at least be oriented weakly.
TOP(ok(isNat(length(x0)))) → TOP(mark(isNatList(x0)))
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(uTake2(and(isNat(x0), and(isNat(x1), isNatIList(x2))), x0, x1, x2)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(uLength(and(isNat(x0), isNatList(x1)), x1)))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 1
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(take(x1, x2)) = x1
POL(tt) = 0
POL(uLength(x1, x2)) = 0
POL(uTake1(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(ok(isNat(length(x0)))) → TOP(mark(isNatList(x0)))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(uTake2(and(isNat(x0), and(isNat(x1), isNatIList(x2))), x0, x1, x2)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(uLength(and(isNat(x0), isNatList(x1)), x1)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(isNat(length(x0)))) → TOP(mark(isNatList(x0)))
The remaining pairs can at least be oriented weakly.
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(uTake2(and(isNat(x0), and(isNat(x1), isNatIList(x2))), x0, x1, x2)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(uLength(and(isNat(x0), isNatList(x1)), x1)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 1
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(take(x1, x2)) = 0
POL(tt) = 0
POL(uLength(x1, x2)) = 0
POL(uTake1(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(uTake2(and(isNat(x0), and(isNat(x1), isNatIList(x2))), x0, x1, x2)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(uLength(and(isNat(x0), isNatList(x1)), x1)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(take(s(x0), cons(x1, x2)))) → TOP(mark(uTake2(and(isNat(x0), and(isNat(x1), isNatIList(x2))), x0, x1, x2)))
The remaining pairs can at least be oriented weakly.
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(uLength(and(isNat(x0), isNatList(x1)), x1)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(take(x1, x2)) = 1
POL(tt) = 0
POL(uLength(x1, x2)) = 0
POL(uTake1(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(uLength(and(isNat(x0), isNatList(x1)), x1)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(length(cons(x0, x1)))) → TOP(mark(uLength(and(isNat(x0), isNatList(x1)), x1)))
The remaining pairs can at least be oriented weakly.
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 1
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(take(x1, x2)) = 0
POL(tt) = 0
POL(uLength(x1, x2)) = 0
POL(uTake1(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(uLength(tt, x0))) → TOP(mark(s(length(x0))))
The remaining pairs can at least be oriented weakly.
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 1
POL(isNat(x1)) = 1
POL(isNatIList(x1)) = 1
POL(isNatList(x1)) = 1
POL(length(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = 1
POL(take(x1, x2)) = x1
POL(tt) = 1
POL(uLength(x1, x2)) = 1 + x1
POL(uTake1(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = x1
POL(zeros) = 1
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(isNatList(take(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
The remaining pairs can at least be oriented weakly.
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = x2
POL(isNat(x1)) = 1 + x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = 1 + x1
POL(length(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x2
POL(tt) = 0
POL(uLength(x1, x2)) = x2
POL(uTake1(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 1 + x4
POL(zeros) = 0
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(zeros)) → TOP(mark(cons(0, zeros)))
The remaining pairs can at least be oriented weakly.
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(take(x1, x2)) = 0
POL(tt) = 0
POL(uLength(x1, x2)) = 0
POL(uTake1(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 0
POL(zeros) = 1
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(mark(zeros)) → TOP(ok(zeros))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(uTake2(tt, x0, x1, x2))) → TOP(mark(cons(x1, take(x0, x2))))
The remaining pairs can at least be oriented weakly.
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = 0
POL(take(x1, x2)) = 1
POL(tt) = 0
POL(uLength(x1, x2)) = 0
POL(uTake1(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 1
POL(zeros) = 0
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(isNatIList(x0))) → TOP(mark(isNatList(x0)))
The remaining pairs can at least be oriented weakly.
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x2
POL(cons(x1, x2)) = x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x2
POL(tt) = 0
POL(uLength(x1, x2)) = x2
POL(uTake1(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 1 + x4
POL(zeros) = 0
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(isNat(s(x0)))) → TOP(mark(isNat(x0)))
The remaining pairs can at least be oriented weakly.
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( uTake2(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( uLength(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(mark(isNat(x0))) → TOP(isNat(proper(x0)))
The remaining pairs can at least be oriented weakly.
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(and(x1, x2)) = 1
POL(cons(x1, x2)) = 1
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 1
POL(isNatList(x1)) = 1
POL(length(x1)) = 1
POL(mark(x1)) = 1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(s(x1)) = 1
POL(take(x1, x2)) = 1
POL(tt) = 0
POL(uLength(x1, x2)) = 1
POL(uTake1(x1)) = 1
POL(uTake2(x1, x2, x3, x4)) = 1
POL(zeros) = 0
The following usable rules [17] were oriented:
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(isNatList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatList(x1))))
TOP(ok(isNatIList(cons(x0, x1)))) → TOP(mark(and(isNat(x0), isNatIList(x1))))
The remaining pairs can at least be oriented weakly.
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( uTake2(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( uLength(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(mark(isNatList(x0))) → TOP(isNatList(proper(x0)))
TOP(mark(isNatIList(x0))) → TOP(isNatIList(proper(x0)))
The remaining pairs can at least be oriented weakly.
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(and(x1, x2)) = 1
POL(cons(x1, x2)) = 1
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 1
POL(mark(x1)) = 1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(s(x1)) = 1
POL(take(x1, x2)) = 1
POL(tt) = 0
POL(uLength(x1, x2)) = 1
POL(uTake1(x1)) = 1
POL(uTake2(x1, x2, x3, x4)) = 1
POL(zeros) = 0
The following usable rules [17] were oriented:
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
isNatIList(ok(X)) → ok(isNatIList(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(ok(and(tt, x0))) → TOP(mark(x0))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
TOP(ok(and(tt, x0))) → TOP(mark(x0))
The remaining pairs can at least be oriented weakly.
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( uTake2(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( uLength(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
active(take(X1, X2)) → take(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(and(X1, X2)) → and(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(uLength(tt, L)) → mark(s(length(L)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uLength(mark(X1), X2) → mark(uLength(X1, X2))
active(uLength(X1, X2)) → uLength(active(X1), X2)
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uTake1(X)) → uTake1(active(X))
active(take(X1, X2)) → take(X1, active(X2))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(and(tt, T)) → mark(T)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(tt) → ok(tt)
proper(uTake1(X)) → uTake1(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(zeros) → ok(zeros)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(and(x0, x1))) → TOP(and(x0, active(x1)))
TOP(ok(length(x0))) → TOP(length(active(x0)))
TOP(mark(uLength(x0, x1))) → TOP(uLength(proper(x0), proper(x1)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(and(x0, x1))) → TOP(and(proper(x0), proper(x1)))
TOP(mark(uTake2(x0, x1, x2, x3))) → TOP(uTake2(proper(x0), proper(x1), proper(x2), proper(x3)))
TOP(mark(uTake1(x0))) → TOP(uTake1(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(uTake2(x0, x1, x2, x3))) → TOP(uTake2(active(x0), x1, x2, x3))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(uTake1(x0))) → TOP(uTake1(active(x0)))
TOP(ok(and(x0, x1))) → TOP(and(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(uLength(x0, x1))) → TOP(uLength(active(x0), x1))
TOP(ok(take(x0, x1))) → TOP(take(active(x0), x1))
TOP(mark(take(x0, x1))) → TOP(take(proper(x0), proper(x1)))
The TRS R consists of the following rules:
active(and(tt, T)) → mark(T)
active(isNatIList(IL)) → mark(isNatList(IL))
active(isNat(0)) → mark(tt)
active(isNat(s(N))) → mark(isNat(N))
active(isNat(length(L))) → mark(isNatList(L))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(N, L))) → mark(and(isNat(N), isNatList(L)))
active(isNatList(take(N, IL))) → mark(and(isNat(N), isNatIList(IL)))
active(zeros) → mark(cons(0, zeros))
active(take(0, IL)) → mark(uTake1(isNatIList(IL)))
active(uTake1(tt)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL))
active(uTake2(tt, M, N, IL)) → mark(cons(N, take(M, IL)))
active(length(cons(N, L))) → mark(uLength(and(isNat(N), isNatList(L)), L))
active(uLength(tt, L)) → mark(s(length(L)))
active(and(X1, X2)) → and(active(X1), X2)
active(and(X1, X2)) → and(X1, active(X2))
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(uTake1(X)) → uTake1(active(X))
active(uTake2(X1, X2, X3, X4)) → uTake2(active(X1), X2, X3, X4)
active(uLength(X1, X2)) → uLength(active(X1), X2)
uLength(mark(X1), X2) → mark(uLength(X1, X2))
uLength(ok(X1), ok(X2)) → ok(uLength(X1, X2))
uTake2(mark(X1), X2, X3, X4) → mark(uTake2(X1, X2, X3, X4))
uTake2(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(uTake2(X1, X2, X3, X4))
uTake1(mark(X)) → mark(uTake1(X))
uTake1(ok(X)) → ok(uTake1(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
length(mark(X)) → mark(length(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
and(mark(X1), X2) → mark(and(X1, X2))
and(X1, mark(X2)) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNatIList(X)) → isNatIList(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(uTake1(X)) → uTake1(proper(X))
proper(uTake2(X1, X2, X3, X4)) → uTake2(proper(X1), proper(X2), proper(X3), proper(X4))
proper(uLength(X1, X2)) → uLength(proper(X1), proper(X2))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.