Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
MARK(geq(X1, X2)) → A__GEQ(X1, X2)
MARK(s(X)) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__GEQ(X, Y)
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(X1, X2)) → MARK(X1)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(minus(X1, X2)) → A__MINUS(X1, X2)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(geq(X1, X2)) → A__GEQ(X1, X2)
MARK(s(X)) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__GEQ(X, Y)
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
MARK(div(X1, X2)) → MARK(X1)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(minus(X1, X2)) → A__MINUS(X1, X2)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 3 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- A__GEQ(s(X), s(Y)) → A__GEQ(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- A__MINUS(s(X), s(Y)) → A__MINUS(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(div(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(if(X1, X2, X3)) → MARK(X1)
A__IF(false, X, Y) → MARK(Y)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → A__IF(mark(X1), X2, X3)
The remaining pairs can at least be oriented weakly.
MARK(div(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__IF(false, X, Y) → MARK(Y)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(A__DIV(x1, x2)) = 0
POL(A__IF(x1, x2, x3)) = x2 + x3
POL(MARK(x1)) = x1
POL(a__div(x1, x2)) = 0
POL(a__geq(x1, x2)) = 0
POL(a__if(x1, x2, x3)) = 0
POL(a__minus(x1, x2)) = 0
POL(div(x1, x2)) = x1
POL(false) = 0
POL(geq(x1, x2)) = 0
POL(if(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(mark(x1)) = 0
POL(minus(x1, x2)) = 0
POL(s(x1)) = x1
POL(true) = 0
The following usable rules [17] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
Q DP problem:
The TRS P consists of the following rules:
MARK(div(X1, X2)) → MARK(X1)
A__IF(false, X, Y) → MARK(Y)
MARK(s(X)) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule A__IF(false, X, Y) → MARK(Y) we obtained the following new rules:
A__IF(false, s(div(minus(y_3, y_4), s(y_5))), 0) → MARK(0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(div(X1, X2)) → MARK(X1)
A__IF(false, s(div(minus(y_3, y_4), s(y_5))), 0) → MARK(0)
MARK(s(X)) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(div(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(div(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
MARK(s(X)) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(A__DIV(x1, x2)) = 1
POL(A__IF(x1, x2, x3)) = x2
POL(MARK(x1)) = x1
POL(a__div(x1, x2)) = 0
POL(a__geq(x1, x2)) = 0
POL(a__if(x1, x2, x3)) = 0
POL(a__minus(x1, x2)) = 0
POL(div(x1, x2)) = 1 + x1
POL(false) = 0
POL(geq(x1, x2)) = 0
POL(if(x1, x2, x3)) = 0
POL(mark(x1)) = 0
POL(minus(x1, x2)) = 0
POL(s(x1)) = x1
POL(true) = 0
The following usable rules [17] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(s(X)) → MARK(X)
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( a__geq(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( minus(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( geq(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( a__minus(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( if(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
M( div(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( a__div(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( a__if(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
M( A__IF(x1, ..., x3) ) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 |
M( A__DIV(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__minus(0, Y) → 0
a__div(0, s(Y)) → 0
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__geq(0, s(Y)) → false
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
a__if(false, X, Y) → mark(Y)
a__if(true, X, Y) → mark(X)
a__geq(X1, X2) → geq(X1, X2)
a__minus(X1, X2) → minus(X1, X2)
mark(false) → false
mark(true) → true
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
Q DP problem:
The TRS P consists of the following rules:
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__IF(true, X, Y) → MARK(X)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule A__IF(true, X, Y) → MARK(X) we obtained the following new rules:
A__IF(true, s(div(minus(y_3, y_4), s(y_5))), 0) → MARK(s(div(minus(y_3, y_4), s(y_5))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A__IF(true, s(div(minus(y_3, y_4), s(y_5))), 0) → MARK(s(div(minus(y_3, y_4), s(y_5))))
MARK(div(X1, X2)) → A__DIV(mark(X1), X2)
A__DIV(s(X), s(Y)) → A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
The TRS R consists of the following rules:
a__minus(0, Y) → 0
a__minus(s(X), s(Y)) → a__minus(X, Y)
a__geq(X, 0) → true
a__geq(0, s(Y)) → false
a__geq(s(X), s(Y)) → a__geq(X, Y)
a__div(0, s(Y)) → 0
a__div(s(X), s(Y)) → a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0)
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
mark(minus(X1, X2)) → a__minus(X1, X2)
mark(geq(X1, X2)) → a__geq(X1, X2)
mark(div(X1, X2)) → a__div(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__minus(X1, X2) → minus(X1, X2)
a__geq(X1, X2) → geq(X1, X2)
a__div(X1, X2) → div(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 3 less nodes.