Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__len(X)) → ACTIVATE(X)
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__len(X)) → LEN(activate(X))
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__from(X)) → FROM(activate(X))
ADD(s(X), Y) → S(n__add(activate(X), Y))
ADD(s(X), Y) → ACTIVATE(X)
LEN(cons(X, Z)) → S(n__len(activate(Z)))
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__len(X)) → ACTIVATE(X)
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__len(X)) → LEN(activate(X))
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__from(X)) → FROM(activate(X))
ADD(s(X), Y) → S(n__add(activate(X), Y))
ADD(s(X), Y) → ACTIVATE(X)
LEN(cons(X, Z)) → S(n__len(activate(Z)))
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__len(X)) → ACTIVATE(X)
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__len(X)) → LEN(activate(X))
ADD(s(X), Y) → ACTIVATE(X)
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fst(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fst(X1, X2)) → FST(activate(X1), activate(X2))
The remaining pairs can at least be oriented weakly.
FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__len(X)) → ACTIVATE(X)
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__len(X)) → LEN(activate(X))
ADD(s(X), Y) → ACTIVATE(X)
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(ADD(x1, x2)) = x1
POL(FST(x1, x2)) = x1 + x2
POL(LEN(x1)) = x1
POL(activate(x1)) = x1
POL(add(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x2
POL(from(x1)) = 1 + x1
POL(fst(x1, x2)) = 1 + x1 + x2
POL(len(x1)) = x1
POL(n__add(x1, x2)) = x1 + x2
POL(n__from(x1)) = 1 + x1
POL(n__fst(x1, x2)) = 1 + x1 + x2
POL(n__len(x1)) = x1
POL(n__s(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
The following usable rules [17] were oriented:
activate(n__len(X)) → len(activate(X))
activate(X) → X
add(0, X) → X
from(X) → cons(X, n__from(n__s(X)))
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
fst(0, Z) → nil
fst(X1, X2) → n__fst(X1, X2)
len(cons(X, Z)) → s(n__len(activate(Z)))
len(nil) → 0
add(s(X), Y) → s(n__add(activate(X), Y))
len(X) → n__len(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
from(X) → n__from(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__s(X)) → s(X)
activate(n__from(X)) → from(activate(X))
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
FST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__len(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__len(X)) → LEN(activate(X))
ADD(s(X), Y) → ACTIVATE(X)
FST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__len(X)) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__len(X)) → LEN(activate(X))
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__len(X)) → ACTIVATE(X)
ACTIVATE(n__len(X)) → LEN(activate(X))
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
LEN(cons(X, Z)) → ACTIVATE(Z)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( fst(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( add(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__add(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__fst(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ADD(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
activate(n__len(X)) → len(activate(X))
activate(X) → X
add(0, X) → X
from(X) → cons(X, n__from(n__s(X)))
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
fst(0, Z) → nil
fst(X1, X2) → n__fst(X1, X2)
len(cons(X, Z)) → s(n__len(activate(Z)))
len(nil) → 0
add(s(X), Y) → s(n__add(activate(X), Y))
len(X) → n__len(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
from(X) → n__from(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__s(X)) → s(X)
activate(n__from(X)) → from(activate(X))
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
LEN(cons(X, Z)) → ACTIVATE(Z)
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
ADD(s(X), Y) → ACTIVATE(X)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(ADD(x1, x2)) = x1
POL(activate(x1)) = x1
POL(add(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = 0
POL(from(x1)) = 0
POL(fst(x1, x2)) = 1
POL(len(x1)) = 0
POL(n__add(x1, x2)) = 1 + x1 + x2
POL(n__from(x1)) = 0
POL(n__fst(x1, x2)) = 1
POL(n__len(x1)) = 0
POL(n__s(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
The following usable rules [17] were oriented:
activate(n__len(X)) → len(activate(X))
activate(X) → X
add(0, X) → X
from(X) → cons(X, n__from(n__s(X)))
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
fst(0, Z) → nil
fst(X1, X2) → n__fst(X1, X2)
len(cons(X, Z)) → s(n__len(activate(Z)))
len(nil) → 0
add(s(X), Y) → s(n__add(activate(X), Y))
len(X) → n__len(X)
add(X1, X2) → n__add(X1, X2)
s(X) → n__s(X)
from(X) → n__from(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__s(X)) → s(X)
activate(n__from(X)) → from(activate(X))
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ADD(s(X), Y) → ACTIVATE(X)
The TRS R consists of the following rules:
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, n__fst(activate(X), activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
len(nil) → 0
len(cons(X, Z)) → s(n__len(activate(Z)))
fst(X1, X2) → n__fst(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
len(X) → n__len(X)
activate(n__fst(X1, X2)) → fst(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__len(X)) → len(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.