Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
active(f(X)) → f(active(X))
active(h(X)) → h(active(X))
f(mark(X)) → mark(f(X))
h(mark(X)) → mark(h(X))
proper(f(X)) → f(proper(X))
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
proper(d(X)) → d(proper(X))
proper(h(X)) → h(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
d(ok(X)) → ok(d(X))
h(ok(X)) → ok(h(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
active(f(X)) → f(active(X))
active(h(X)) → h(active(X))
f(mark(X)) → mark(f(X))
h(mark(X)) → mark(h(X))
proper(f(X)) → f(proper(X))
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
proper(d(X)) → d(proper(X))
proper(h(X)) → h(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
d(ok(X)) → ok(d(X))
h(ok(X)) → ok(h(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We use [27] with the following order to prove termination.
Knuth-Bendix order [24] with precedence:
active1 > f1 > ok1
active1 > f1 > mark1
active1 > h1 > ok1
active1 > h1 > mark1
proper1 > c1 > ok1
proper1 > f1 > ok1
proper1 > f1 > mark1
proper1 > g1 > ok1
proper1 > h1 > ok1
proper1 > h1 > mark1
proper1 > d1 > ok1
and weight map:
top_1=1
active_1=14
f_1=1
c_1=4
g_1=4
h_1=3
mark_1=2
ok_1=15
d_1=8
proper_1=1
dummyConstant=1