Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(head(cons(X, XS))) → mark(X)
active(tail(cons(X, XS))) → mark(XS)
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(head(cons(X, XS))) → mark(X)
active(tail(cons(X, XS))) → mark(XS)
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(head(cons(X, XS))) → mark(X)
active(tail(cons(X, XS))) → mark(XS)
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(head(cons(X, XS))) → mark(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(head(x1)) = 1 + x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(odds) = 0   
POL(ok(x1)) = x1   
POL(pairs) = 0   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(top(x1)) = x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(tail(cons(X, XS))) → mark(XS)
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(tail(cons(X, XS))) → mark(XS)
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(tail(cons(X, XS))) → mark(XS)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(head(x1)) = x1   
POL(incr(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(odds) = 0   
POL(ok(x1)) = x1   
POL(pairs) = 0   
POL(proper(x1)) = x1   
POL(s(x1)) = 2·x1   
POL(tail(x1)) = 2 + x1   
POL(top(x1)) = 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(nats) → CONS(0, incr(nats))
TOP(mark(X)) → PROPER(X)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
INCR(ok(X)) → INCR(X)
PROPER(head(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(incr(X)) → ACTIVE(X)
HEAD(mark(X)) → HEAD(X)
PROPER(incr(X)) → INCR(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(nats) → INCR(nats)
PROPER(tail(X)) → PROPER(X)
TAIL(ok(X)) → TAIL(X)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(odds) → INCR(pairs)
TOP(ok(X)) → TOP(active(X))
ACTIVE(incr(cons(X, XS))) → S(X)
ACTIVE(incr(cons(X, XS))) → INCR(XS)
PROPER(incr(X)) → PROPER(X)
ACTIVE(incr(X)) → INCR(active(X))
INCR(mark(X)) → INCR(X)
S(mark(X)) → S(X)
ACTIVE(pairs) → INCR(odds)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(pairs) → CONS(0, incr(odds))
PROPER(head(X)) → HEAD(proper(X))
PROPER(s(X)) → S(proper(X))
PROPER(tail(X)) → TAIL(proper(X))
TAIL(mark(X)) → TAIL(X)
ACTIVE(incr(cons(X, XS))) → CONS(s(X), incr(XS))
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → ACTIVE(X)
HEAD(ok(X)) → HEAD(X)
ACTIVE(s(X)) → S(active(X))

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(nats) → CONS(0, incr(nats))
TOP(mark(X)) → PROPER(X)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
INCR(ok(X)) → INCR(X)
PROPER(head(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(incr(X)) → ACTIVE(X)
HEAD(mark(X)) → HEAD(X)
PROPER(incr(X)) → INCR(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(nats) → INCR(nats)
PROPER(tail(X)) → PROPER(X)
TAIL(ok(X)) → TAIL(X)
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(odds) → INCR(pairs)
TOP(ok(X)) → TOP(active(X))
ACTIVE(incr(cons(X, XS))) → S(X)
ACTIVE(incr(cons(X, XS))) → INCR(XS)
PROPER(incr(X)) → PROPER(X)
ACTIVE(incr(X)) → INCR(active(X))
INCR(mark(X)) → INCR(X)
S(mark(X)) → S(X)
ACTIVE(pairs) → INCR(odds)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(pairs) → CONS(0, incr(odds))
PROPER(head(X)) → HEAD(proper(X))
PROPER(s(X)) → S(proper(X))
PROPER(tail(X)) → TAIL(proper(X))
TAIL(mark(X)) → TAIL(X)
ACTIVE(incr(cons(X, XS))) → CONS(s(X), incr(XS))
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → ACTIVE(X)
HEAD(ok(X)) → HEAD(X)
ACTIVE(s(X)) → S(active(X))

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 8 SCCs with 20 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)
HEAD(ok(X)) → HEAD(X)

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)
HEAD(ok(X)) → HEAD(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(mark(X)) → INCR(X)
INCR(ok(X)) → INCR(X)

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(mark(X)) → INCR(X)
INCR(ok(X)) → INCR(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(tail(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(head(X)) → PROPER(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ UsableRulesProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
incr(mark(X)) → mark(incr(X))
incr(ok(X)) → ok(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.

TOP(mark(X)) → TOP(proper(X))
Used ordering: Polynomial interpretation [25,35]:

POL(tail(x1)) = 1 + x_1   
POL(head(x1)) = x_1   
POL(pairs) = 1   
POL(mark(x1)) = 1 + x_1   
POL(ok(x1)) = 1 + x_1   
POL(0) = 0   
POL(active(x1)) = x_1   
POL(cons(x1, x2)) = x_1   
POL(odds) = 3   
POL(incr(x1)) = 1 + x_1   
POL(TOP(x1)) = (4)x_1   
POL(s(x1)) = x_1   
POL(proper(x1)) = 1 + x_1   
POL(nats) = 1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented:

head(mark(X)) → mark(head(X))
tail(ok(X)) → ok(tail(X))
tail(mark(X)) → mark(tail(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
head(ok(X)) → ok(head(X))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(odds) → mark(incr(pairs))
active(pairs) → mark(cons(0, incr(odds)))
active(nats) → mark(cons(0, incr(nats)))
active(head(X)) → head(active(X))
active(s(X)) → s(active(X))
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(nats) → ok(nats)
incr(ok(X)) → ok(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(nats) → mark(cons(0, incr(nats)))
active(pairs) → mark(cons(0, incr(odds)))
active(odds) → mark(incr(pairs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
incr(mark(X)) → mark(incr(X))
incr(ok(X)) → ok(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(mark(X)) → mark(head(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
incr(mark(X)) → mark(incr(X))
incr(ok(X)) → ok(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

TOP(mark(X)) → TOP(proper(X))

Strictly oriented rules of the TRS R:

head(mark(X)) → mark(head(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(TOP(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(head(x1)) = 2·x1   
POL(incr(x1)) = 2·x1   
POL(mark(x1)) = 1 + x1   
POL(nats) = 0   
POL(odds) = 0   
POL(ok(x1)) = 2·x1   
POL(pairs) = 0   
POL(proper(x1)) = x1   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ RuleRemovalProof
QDP
                                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

proper(nats) → ok(nats)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(pairs) → ok(pairs)
proper(odds) → ok(odds)
proper(s(X)) → s(proper(X))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
tail(mark(X)) → mark(tail(X))
tail(ok(X)) → ok(tail(X))
head(ok(X)) → ok(head(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.