Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(c) → MARK(a)
MARK(f(X1, X2, X3)) → MARK(X3)
ACTIVE(f(a, b, X)) → F(X, X, X)
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
F(X1, mark(X2), X3) → F(X1, X2, X3)
MARK(b) → ACTIVE(b)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
MARK(a) → ACTIVE(a)
F(X1, active(X2), X3) → F(X1, X2, X3)
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3)))
MARK(c) → ACTIVE(c)
ACTIVE(c) → MARK(b)
MARK(f(X1, X2, X3)) → F(X1, X2, mark(X3))
F(X1, X2, active(X3)) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(c) → MARK(a)
MARK(f(X1, X2, X3)) → MARK(X3)
ACTIVE(f(a, b, X)) → F(X, X, X)
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
F(X1, mark(X2), X3) → F(X1, X2, X3)
MARK(b) → ACTIVE(b)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
MARK(a) → ACTIVE(a)
F(X1, active(X2), X3) → F(X1, X2, X3)
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3)))
MARK(c) → ACTIVE(c)
ACTIVE(c) → MARK(b)
MARK(f(X1, X2, X3)) → F(X1, X2, mark(X3))
F(X1, X2, active(X3)) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 7 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(X1, active(X2), X3) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- F(X1, active(X2), X3) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3
- F(X1, X2, active(X3)) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3
- F(mark(X1), X2, X3) → F(X1, X2, X3)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3
- F(X1, mark(X2), X3) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3
- F(X1, X2, mark(X3)) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3
- F(active(X1), X2, X3) → F(X1, X2, X3)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2, X3)) → MARK(X3)
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(f(X1, X2, X3)) → MARK(X3)
The remaining pairs can at least be oriented weakly.
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( f(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
f(X1, X2, active(X3)) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
active(c) → mark(b)
active(c) → mark(a)
mark(a) → active(a)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(c) → active(c)
mark(b) → active(b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.