active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
ACTIVE(f(a, b, X)) → F(X, X, X)
F(ok(X1), ok(X2), ok(X3)) → F(X1, X2, X3)
ACTIVE(f(X1, X2, X3)) → F(X1, X2, active(X3))
TOP(mark(X)) → PROPER(X)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
TOP(ok(X)) → ACTIVE(X)
PROPER(f(X1, X2, X3)) → PROPER(X1)
PROPER(f(X1, X2, X3)) → PROPER(X2)
ACTIVE(f(X1, X2, X3)) → ACTIVE(X3)
PROPER(f(X1, X2, X3)) → PROPER(X3)
TOP(mark(X)) → TOP(proper(X))
PROPER(f(X1, X2, X3)) → F(proper(X1), proper(X2), proper(X3))
TOP(ok(X)) → TOP(active(X))
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVE(f(a, b, X)) → F(X, X, X)
F(ok(X1), ok(X2), ok(X3)) → F(X1, X2, X3)
ACTIVE(f(X1, X2, X3)) → F(X1, X2, active(X3))
TOP(mark(X)) → PROPER(X)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
TOP(ok(X)) → ACTIVE(X)
PROPER(f(X1, X2, X3)) → PROPER(X1)
PROPER(f(X1, X2, X3)) → PROPER(X2)
ACTIVE(f(X1, X2, X3)) → ACTIVE(X3)
PROPER(f(X1, X2, X3)) → PROPER(X3)
TOP(mark(X)) → TOP(proper(X))
PROPER(f(X1, X2, X3)) → F(proper(X1), proper(X2), proper(X3))
TOP(ok(X)) → TOP(active(X))
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
F(ok(X1), ok(X2), ok(X3)) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
F(ok(X1), ok(X2), ok(X3)) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
PROPER(f(X1, X2, X3)) → PROPER(X1)
PROPER(f(X1, X2, X3)) → PROPER(X2)
PROPER(f(X1, X2, X3)) → PROPER(X3)
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
PROPER(f(X1, X2, X3)) → PROPER(X1)
PROPER(f(X1, X2, X3)) → PROPER(X2)
PROPER(f(X1, X2, X3)) → PROPER(X3)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
ACTIVE(f(X1, X2, X3)) → ACTIVE(X3)
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
ACTIVE(f(X1, X2, X3)) → ACTIVE(X3)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
POL(TOP(x1)) = 2·x1
POL(a) = 0
POL(active(x1)) = 2·x1
POL(b) = 0
POL(c) = 0
POL(f(x1, x2, x3)) = x1 + x2 + 2·x3
POL(mark(x1)) = x1
POL(ok(x1)) = 2·x1
POL(proper(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
TOP(mark(b)) → TOP(ok(b))
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
TOP(mark(c)) → TOP(ok(c))
TOP(mark(a)) → TOP(ok(a))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
TOP(mark(b)) → TOP(ok(b))
TOP(mark(a)) → TOP(ok(a))
TOP(mark(c)) → TOP(ok(c))
TOP(ok(X)) → TOP(active(X))
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
TOP(mark(b)) → TOP(ok(b))
TOP(mark(a)) → TOP(ok(a))
TOP(ok(X)) → TOP(active(X))
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
TOP(ok(c)) → TOP(mark(a))
TOP(ok(f(a, b, x0))) → TOP(mark(f(x0, x0, x0)))
TOP(ok(c)) → TOP(mark(b))
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, x1, active(x2)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
TOP(ok(f(a, b, x0))) → TOP(mark(f(x0, x0, x0)))
TOP(ok(c)) → TOP(mark(a))
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
TOP(ok(c)) → TOP(mark(b))
TOP(mark(b)) → TOP(ok(b))
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, x1, active(x2)))
TOP(mark(a)) → TOP(ok(a))
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
TOP(ok(f(a, b, x0))) → TOP(mark(f(x0, x0, x0)))
TOP(mark(f(x0, x1, x2))) → TOP(f(proper(x0), proper(x1), proper(x2)))
TOP(ok(f(x0, x1, x2))) → TOP(f(x0, x1, active(x2)))
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
active(f(X1, X2, X3)) → f(X1, X2, active(X3))
f(X1, X2, mark(X3)) → mark(f(X1, X2, X3))
f(ok(X1), ok(X2), ok(X3)) → ok(f(X1, X2, X3))
proper(f(X1, X2, X3)) → f(proper(X1), proper(X2), proper(X3))
proper(a) → ok(a)
proper(b) → ok(b)
proper(c) → ok(c)
TOP.0(ok.0(f.0-1-1(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.1(x2)))
TOP.0(ok.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.1-1-1(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.1(x2)))
TOP.0(ok.0(f.0-0-1(x0, x1, x2))) → TOP.0(f.0-0-0(x0, x1, active.1(x2)))
TOP.0(mark.0(f.1-1-1(x0, x1, x2))) → TOP.0(f.1-1-1(proper.1(x0), proper.1(x1), proper.1(x2)))
TOP.0(ok.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(x0, x1, active.0(x2)))
TOP.0(mark.0(f.0-0-1(x0, x1, x2))) → TOP.0(f.0-0-1(proper.0(x0), proper.0(x1), proper.1(x2)))
TOP.0(mark.0(f.0-1-1(x0, x1, x2))) → TOP.0(f.0-1-1(proper.0(x0), proper.1(x1), proper.1(x2)))
TOP.0(ok.0(f.0-1-0(a., b., x0))) → TOP.0(mark.0(f.0-0-0(x0, x0, x0)))
TOP.0(mark.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2)))
TOP.0(ok.0(f.1-0-1(x0, x1, x2))) → TOP.0(f.1-0-0(x0, x1, active.1(x2)))
TOP.0(mark.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2)))
TOP.0(mark.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2)))
TOP.0(mark.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2)))
TOP.0(ok.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.0(x2)))
TOP.0(mark.0(f.1-0-1(x0, x1, x2))) → TOP.0(f.1-0-1(proper.1(x0), proper.0(x1), proper.1(x2)))
TOP.0(ok.0(f.0-1-1(a., b., x0))) → TOP.0(mark.0(f.1-1-1(x0, x0, x0)))
TOP.0(ok.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(x0, x1, active.0(x2)))
f.1-0-0(X1, X2, mark.1(X3)) → mark.0(f.1-0-1(X1, X2, X3))
proper.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(proper.1(X1), proper.0(X2), proper.0(X3))
active.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(X1, X2, active.0(X3))
active.0(f.0-0-1(X1, X2, X3)) → f.0-0-0(X1, X2, active.1(X3))
active.0(f.0-1-0(a., b., X)) → mark.0(f.0-0-0(X, X, X))
active.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(X1, X2, active.0(X3))
proper.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(proper.1(X1), proper.1(X2), proper.0(X3))
f.0-0-1(ok.0(X1), ok.0(X2), ok.1(X3)) → ok.0(f.0-0-1(X1, X2, X3))
f.0-0-0(ok.0(X1), ok.0(X2), ok.0(X3)) → ok.0(f.0-0-0(X1, X2, X3))
f.1-0-0(X1, X2, mark.0(X3)) → mark.0(f.1-0-0(X1, X2, X3))
active.0(f.0-1-1(a., b., X)) → mark.0(f.1-1-1(X, X, X))
proper.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(proper.0(X1), proper.1(X2), proper.0(X3))
proper.0(c.) → ok.0(c.)
f.1-0-0(ok.1(X1), ok.0(X2), ok.0(X3)) → ok.0(f.1-0-0(X1, X2, X3))
f.0-0-0(X1, X2, mark.0(X3)) → mark.0(f.0-0-0(X1, X2, X3))
proper.0(f.0-1-1(X1, X2, X3)) → f.0-1-1(proper.0(X1), proper.1(X2), proper.1(X3))
active.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(X1, X2, active.0(X3))
proper.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(proper.0(X1), proper.0(X2), proper.0(X3))
f.1-0-1(ok.1(X1), ok.0(X2), ok.1(X3)) → ok.0(f.1-0-1(X1, X2, X3))
f.1-1-0(X1, X2, mark.0(X3)) → mark.0(f.1-1-0(X1, X2, X3))
proper.1(b.) → ok.1(b.)
f.1-1-0(X1, X2, mark.1(X3)) → mark.0(f.1-1-1(X1, X2, X3))
f.1-1-0(ok.1(X1), ok.1(X2), ok.0(X3)) → ok.0(f.1-1-0(X1, X2, X3))
active.0(c.) → mark.1(b.)
f.0-1-1(ok.0(X1), ok.1(X2), ok.1(X3)) → ok.0(f.0-1-1(X1, X2, X3))
proper.0(f.1-0-1(X1, X2, X3)) → f.1-0-1(proper.1(X1), proper.0(X2), proper.1(X3))
active.0(f.1-0-1(X1, X2, X3)) → f.1-0-0(X1, X2, active.1(X3))
f.0-1-0(ok.0(X1), ok.1(X2), ok.0(X3)) → ok.0(f.0-1-0(X1, X2, X3))
active.0(f.1-1-1(X1, X2, X3)) → f.1-1-0(X1, X2, active.1(X3))
proper.0(a.) → ok.0(a.)
f.0-1-0(X1, X2, mark.0(X3)) → mark.0(f.0-1-0(X1, X2, X3))
proper.0(f.0-0-1(X1, X2, X3)) → f.0-0-1(proper.0(X1), proper.0(X2), proper.1(X3))
f.0-0-0(X1, X2, mark.1(X3)) → mark.0(f.0-0-1(X1, X2, X3))
active.0(f.0-1-1(X1, X2, X3)) → f.0-1-0(X1, X2, active.1(X3))
f.0-1-0(X1, X2, mark.1(X3)) → mark.0(f.0-1-1(X1, X2, X3))
active.0(c.) → mark.0(a.)
proper.0(f.1-1-1(X1, X2, X3)) → f.1-1-1(proper.1(X1), proper.1(X2), proper.1(X3))
f.1-1-1(ok.1(X1), ok.1(X2), ok.1(X3)) → ok.0(f.1-1-1(X1, X2, X3))
active.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(X1, X2, active.0(X3))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
TOP.0(ok.0(f.0-1-1(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.1(x2)))
TOP.0(ok.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.1-1-1(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.1(x2)))
TOP.0(ok.0(f.0-0-1(x0, x1, x2))) → TOP.0(f.0-0-0(x0, x1, active.1(x2)))
TOP.0(mark.0(f.1-1-1(x0, x1, x2))) → TOP.0(f.1-1-1(proper.1(x0), proper.1(x1), proper.1(x2)))
TOP.0(ok.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(x0, x1, active.0(x2)))
TOP.0(mark.0(f.0-0-1(x0, x1, x2))) → TOP.0(f.0-0-1(proper.0(x0), proper.0(x1), proper.1(x2)))
TOP.0(mark.0(f.0-1-1(x0, x1, x2))) → TOP.0(f.0-1-1(proper.0(x0), proper.1(x1), proper.1(x2)))
TOP.0(ok.0(f.0-1-0(a., b., x0))) → TOP.0(mark.0(f.0-0-0(x0, x0, x0)))
TOP.0(mark.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2)))
TOP.0(ok.0(f.1-0-1(x0, x1, x2))) → TOP.0(f.1-0-0(x0, x1, active.1(x2)))
TOP.0(mark.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2)))
TOP.0(mark.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2)))
TOP.0(mark.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2)))
TOP.0(ok.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.0(x2)))
TOP.0(mark.0(f.1-0-1(x0, x1, x2))) → TOP.0(f.1-0-1(proper.1(x0), proper.0(x1), proper.1(x2)))
TOP.0(ok.0(f.0-1-1(a., b., x0))) → TOP.0(mark.0(f.1-1-1(x0, x0, x0)))
TOP.0(ok.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(x0, x1, active.0(x2)))
f.1-0-0(X1, X2, mark.1(X3)) → mark.0(f.1-0-1(X1, X2, X3))
proper.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(proper.1(X1), proper.0(X2), proper.0(X3))
active.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(X1, X2, active.0(X3))
active.0(f.0-0-1(X1, X2, X3)) → f.0-0-0(X1, X2, active.1(X3))
active.0(f.0-1-0(a., b., X)) → mark.0(f.0-0-0(X, X, X))
active.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(X1, X2, active.0(X3))
proper.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(proper.1(X1), proper.1(X2), proper.0(X3))
f.0-0-1(ok.0(X1), ok.0(X2), ok.1(X3)) → ok.0(f.0-0-1(X1, X2, X3))
f.0-0-0(ok.0(X1), ok.0(X2), ok.0(X3)) → ok.0(f.0-0-0(X1, X2, X3))
f.1-0-0(X1, X2, mark.0(X3)) → mark.0(f.1-0-0(X1, X2, X3))
active.0(f.0-1-1(a., b., X)) → mark.0(f.1-1-1(X, X, X))
proper.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(proper.0(X1), proper.1(X2), proper.0(X3))
proper.0(c.) → ok.0(c.)
f.1-0-0(ok.1(X1), ok.0(X2), ok.0(X3)) → ok.0(f.1-0-0(X1, X2, X3))
f.0-0-0(X1, X2, mark.0(X3)) → mark.0(f.0-0-0(X1, X2, X3))
proper.0(f.0-1-1(X1, X2, X3)) → f.0-1-1(proper.0(X1), proper.1(X2), proper.1(X3))
active.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(X1, X2, active.0(X3))
proper.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(proper.0(X1), proper.0(X2), proper.0(X3))
f.1-0-1(ok.1(X1), ok.0(X2), ok.1(X3)) → ok.0(f.1-0-1(X1, X2, X3))
f.1-1-0(X1, X2, mark.0(X3)) → mark.0(f.1-1-0(X1, X2, X3))
proper.1(b.) → ok.1(b.)
f.1-1-0(X1, X2, mark.1(X3)) → mark.0(f.1-1-1(X1, X2, X3))
f.1-1-0(ok.1(X1), ok.1(X2), ok.0(X3)) → ok.0(f.1-1-0(X1, X2, X3))
active.0(c.) → mark.1(b.)
f.0-1-1(ok.0(X1), ok.1(X2), ok.1(X3)) → ok.0(f.0-1-1(X1, X2, X3))
proper.0(f.1-0-1(X1, X2, X3)) → f.1-0-1(proper.1(X1), proper.0(X2), proper.1(X3))
active.0(f.1-0-1(X1, X2, X3)) → f.1-0-0(X1, X2, active.1(X3))
f.0-1-0(ok.0(X1), ok.1(X2), ok.0(X3)) → ok.0(f.0-1-0(X1, X2, X3))
active.0(f.1-1-1(X1, X2, X3)) → f.1-1-0(X1, X2, active.1(X3))
proper.0(a.) → ok.0(a.)
f.0-1-0(X1, X2, mark.0(X3)) → mark.0(f.0-1-0(X1, X2, X3))
proper.0(f.0-0-1(X1, X2, X3)) → f.0-0-1(proper.0(X1), proper.0(X2), proper.1(X3))
f.0-0-0(X1, X2, mark.1(X3)) → mark.0(f.0-0-1(X1, X2, X3))
active.0(f.0-1-1(X1, X2, X3)) → f.0-1-0(X1, X2, active.1(X3))
f.0-1-0(X1, X2, mark.1(X3)) → mark.0(f.0-1-1(X1, X2, X3))
active.0(c.) → mark.0(a.)
proper.0(f.1-1-1(X1, X2, X3)) → f.1-1-1(proper.1(X1), proper.1(X2), proper.1(X3))
f.1-1-1(ok.1(X1), ok.1(X2), ok.1(X3)) → ok.0(f.1-1-1(X1, X2, X3))
active.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(X1, X2, active.0(X3))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
TOP.0(ok.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.0(x2)))
TOP.0(mark.0(f.1-1-1(x0, x1, x2))) → TOP.0(f.1-1-1(proper.1(x0), proper.1(x1), proper.1(x2)))
TOP.0(ok.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(x0, x1, active.0(x2)))
TOP.0(mark.0(f.0-0-1(x0, x1, x2))) → TOP.0(f.0-0-1(proper.0(x0), proper.0(x1), proper.1(x2)))
TOP.0(mark.0(f.0-1-1(x0, x1, x2))) → TOP.0(f.0-1-1(proper.0(x0), proper.1(x1), proper.1(x2)))
TOP.0(ok.0(f.0-1-0(a., b., x0))) → TOP.0(mark.0(f.0-0-0(x0, x0, x0)))
TOP.0(mark.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2)))
TOP.0(mark.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2)))
TOP.0(mark.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2)))
TOP.0(mark.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2)))
TOP.0(ok.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.0(x2)))
TOP.0(mark.0(f.1-0-1(x0, x1, x2))) → TOP.0(f.1-0-1(proper.1(x0), proper.0(x1), proper.1(x2)))
TOP.0(ok.0(f.0-1-1(a., b., x0))) → TOP.0(mark.0(f.1-1-1(x0, x0, x0)))
TOP.0(ok.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(x0, x1, active.0(x2)))
f.1-0-0(X1, X2, mark.1(X3)) → mark.0(f.1-0-1(X1, X2, X3))
proper.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(proper.1(X1), proper.0(X2), proper.0(X3))
active.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(X1, X2, active.0(X3))
active.0(f.0-0-1(X1, X2, X3)) → f.0-0-0(X1, X2, active.1(X3))
active.0(f.0-1-0(a., b., X)) → mark.0(f.0-0-0(X, X, X))
active.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(X1, X2, active.0(X3))
proper.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(proper.1(X1), proper.1(X2), proper.0(X3))
f.0-0-1(ok.0(X1), ok.0(X2), ok.1(X3)) → ok.0(f.0-0-1(X1, X2, X3))
f.0-0-0(ok.0(X1), ok.0(X2), ok.0(X3)) → ok.0(f.0-0-0(X1, X2, X3))
f.1-0-0(X1, X2, mark.0(X3)) → mark.0(f.1-0-0(X1, X2, X3))
active.0(f.0-1-1(a., b., X)) → mark.0(f.1-1-1(X, X, X))
proper.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(proper.0(X1), proper.1(X2), proper.0(X3))
proper.0(c.) → ok.0(c.)
f.1-0-0(ok.1(X1), ok.0(X2), ok.0(X3)) → ok.0(f.1-0-0(X1, X2, X3))
f.0-0-0(X1, X2, mark.0(X3)) → mark.0(f.0-0-0(X1, X2, X3))
proper.0(f.0-1-1(X1, X2, X3)) → f.0-1-1(proper.0(X1), proper.1(X2), proper.1(X3))
active.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(X1, X2, active.0(X3))
proper.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(proper.0(X1), proper.0(X2), proper.0(X3))
f.1-0-1(ok.1(X1), ok.0(X2), ok.1(X3)) → ok.0(f.1-0-1(X1, X2, X3))
f.1-1-0(X1, X2, mark.0(X3)) → mark.0(f.1-1-0(X1, X2, X3))
proper.1(b.) → ok.1(b.)
f.1-1-0(X1, X2, mark.1(X3)) → mark.0(f.1-1-1(X1, X2, X3))
f.1-1-0(ok.1(X1), ok.1(X2), ok.0(X3)) → ok.0(f.1-1-0(X1, X2, X3))
active.0(c.) → mark.1(b.)
f.0-1-1(ok.0(X1), ok.1(X2), ok.1(X3)) → ok.0(f.0-1-1(X1, X2, X3))
proper.0(f.1-0-1(X1, X2, X3)) → f.1-0-1(proper.1(X1), proper.0(X2), proper.1(X3))
active.0(f.1-0-1(X1, X2, X3)) → f.1-0-0(X1, X2, active.1(X3))
f.0-1-0(ok.0(X1), ok.1(X2), ok.0(X3)) → ok.0(f.0-1-0(X1, X2, X3))
active.0(f.1-1-1(X1, X2, X3)) → f.1-1-0(X1, X2, active.1(X3))
proper.0(a.) → ok.0(a.)
f.0-1-0(X1, X2, mark.0(X3)) → mark.0(f.0-1-0(X1, X2, X3))
proper.0(f.0-0-1(X1, X2, X3)) → f.0-0-1(proper.0(X1), proper.0(X2), proper.1(X3))
f.0-0-0(X1, X2, mark.1(X3)) → mark.0(f.0-0-1(X1, X2, X3))
active.0(f.0-1-1(X1, X2, X3)) → f.0-1-0(X1, X2, active.1(X3))
f.0-1-0(X1, X2, mark.1(X3)) → mark.0(f.0-1-1(X1, X2, X3))
active.0(c.) → mark.0(a.)
proper.0(f.1-1-1(X1, X2, X3)) → f.1-1-1(proper.1(X1), proper.1(X2), proper.1(X3))
f.1-1-1(ok.1(X1), ok.1(X2), ok.1(X3)) → ok.0(f.1-1-1(X1, X2, X3))
active.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(X1, X2, active.0(X3))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP.0(mark.0(f.1-1-1(x0, x1, x2))) → TOP.0(f.1-1-1(proper.1(x0), proper.1(x1), proper.1(x2)))
TOP.0(mark.0(f.0-0-1(x0, x1, x2))) → TOP.0(f.0-0-1(proper.0(x0), proper.0(x1), proper.1(x2)))
TOP.0(mark.0(f.0-1-1(x0, x1, x2))) → TOP.0(f.0-1-1(proper.0(x0), proper.1(x1), proper.1(x2)))
TOP.0(mark.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(proper.1(x0), proper.1(x1), proper.0(x2)))
TOP.0(mark.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(proper.0(x0), proper.1(x1), proper.0(x2)))
TOP.0(mark.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(proper.0(x0), proper.0(x1), proper.0(x2)))
TOP.0(mark.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(proper.1(x0), proper.0(x1), proper.0(x2)))
TOP.0(mark.0(f.1-0-1(x0, x1, x2))) → TOP.0(f.1-0-1(proper.1(x0), proper.0(x1), proper.1(x2)))
TOP.0(ok.0(f.0-1-1(a., b., x0))) → TOP.0(mark.0(f.1-1-1(x0, x0, x0)))
Used ordering: Polynomial interpretation [25]:
TOP.0(ok.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.0-1-0(a., b., x0))) → TOP.0(mark.0(f.0-0-0(x0, x0, x0)))
TOP.0(ok.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(x0, x1, active.0(x2)))
POL(TOP.0(x1)) = x1
POL(a.) = 0
POL(active.0(x1)) = x1
POL(active.1(x1)) = 0
POL(b.) = 1
POL(c.) = 1
POL(f.0-0-0(x1, x2, x3)) = 1 + x3
POL(f.0-0-1(x1, x2, x3)) = 1
POL(f.0-1-0(x1, x2, x3)) = 1 + x2 + x3
POL(f.0-1-1(x1, x2, x3)) = 1 + x2
POL(f.1-0-0(x1, x2, x3)) = x3
POL(f.1-0-1(x1, x2, x3)) = 0
POL(f.1-1-0(x1, x2, x3)) = x3
POL(f.1-1-1(x1, x2, x3)) = 0
POL(mark.0(x1)) = 1 + x1
POL(mark.1(x1)) = 1
POL(ok.0(x1)) = x1
POL(ok.1(x1)) = x1
POL(proper.0(x1)) = x1
POL(proper.1(x1)) = x1
f.0-1-1(ok.0(X1), ok.1(X2), ok.1(X3)) → ok.0(f.0-1-1(X1, X2, X3))
f.1-0-0(X1, X2, mark.1(X3)) → mark.0(f.1-0-1(X1, X2, X3))
proper.0(f.1-0-1(X1, X2, X3)) → f.1-0-1(proper.1(X1), proper.0(X2), proper.1(X3))
proper.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(proper.1(X1), proper.0(X2), proper.0(X3))
active.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(X1, X2, active.0(X3))
active.0(f.1-0-1(X1, X2, X3)) → f.1-0-0(X1, X2, active.1(X3))
active.0(f.0-0-1(X1, X2, X3)) → f.0-0-0(X1, X2, active.1(X3))
f.0-1-0(ok.0(X1), ok.1(X2), ok.0(X3)) → ok.0(f.0-1-0(X1, X2, X3))
proper.1(b.) → ok.1(b.)
f.1-1-0(X1, X2, mark.1(X3)) → mark.0(f.1-1-1(X1, X2, X3))
f.1-1-0(ok.1(X1), ok.1(X2), ok.0(X3)) → ok.0(f.1-1-0(X1, X2, X3))
active.0(c.) → mark.1(b.)
active.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(X1, X2, active.0(X3))
f.0-0-0(ok.0(X1), ok.0(X2), ok.0(X3)) → ok.0(f.0-0-0(X1, X2, X3))
proper.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(proper.0(X1), proper.0(X2), proper.0(X3))
f.1-0-0(X1, X2, mark.0(X3)) → mark.0(f.1-0-0(X1, X2, X3))
f.1-0-1(ok.1(X1), ok.0(X2), ok.1(X3)) → ok.0(f.1-0-1(X1, X2, X3))
active.0(f.0-1-1(a., b., X)) → mark.0(f.1-1-1(X, X, X))
proper.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(proper.0(X1), proper.1(X2), proper.0(X3))
f.1-1-0(X1, X2, mark.0(X3)) → mark.0(f.1-1-0(X1, X2, X3))
proper.0(c.) → ok.0(c.)
active.0(f.0-1-0(a., b., X)) → mark.0(f.0-0-0(X, X, X))
active.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(X1, X2, active.0(X3))
f.1-0-0(ok.1(X1), ok.0(X2), ok.0(X3)) → ok.0(f.1-0-0(X1, X2, X3))
proper.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(proper.1(X1), proper.1(X2), proper.0(X3))
f.0-0-0(X1, X2, mark.0(X3)) → mark.0(f.0-0-0(X1, X2, X3))
f.0-0-1(ok.0(X1), ok.0(X2), ok.1(X3)) → ok.0(f.0-0-1(X1, X2, X3))
proper.0(f.0-1-1(X1, X2, X3)) → f.0-1-1(proper.0(X1), proper.1(X2), proper.1(X3))
f.1-1-1(ok.1(X1), ok.1(X2), ok.1(X3)) → ok.0(f.1-1-1(X1, X2, X3))
proper.0(f.1-1-1(X1, X2, X3)) → f.1-1-1(proper.1(X1), proper.1(X2), proper.1(X3))
active.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(X1, X2, active.0(X3))
active.0(f.0-1-1(X1, X2, X3)) → f.0-1-0(X1, X2, active.1(X3))
f.0-0-0(X1, X2, mark.1(X3)) → mark.0(f.0-0-1(X1, X2, X3))
active.0(c.) → mark.0(a.)
f.0-1-0(X1, X2, mark.1(X3)) → mark.0(f.0-1-1(X1, X2, X3))
proper.0(a.) → ok.0(a.)
active.0(f.1-1-1(X1, X2, X3)) → f.1-1-0(X1, X2, active.1(X3))
proper.0(f.0-0-1(X1, X2, X3)) → f.0-0-1(proper.0(X1), proper.0(X2), proper.1(X3))
f.0-1-0(X1, X2, mark.0(X3)) → mark.0(f.0-1-0(X1, X2, X3))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
TOP.0(ok.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.0-1-0(a., b., x0))) → TOP.0(mark.0(f.0-0-0(x0, x0, x0)))
TOP.0(ok.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(x0, x1, active.0(x2)))
f.1-0-0(X1, X2, mark.1(X3)) → mark.0(f.1-0-1(X1, X2, X3))
proper.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(proper.1(X1), proper.0(X2), proper.0(X3))
active.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(X1, X2, active.0(X3))
active.0(f.0-0-1(X1, X2, X3)) → f.0-0-0(X1, X2, active.1(X3))
active.0(f.0-1-0(a., b., X)) → mark.0(f.0-0-0(X, X, X))
active.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(X1, X2, active.0(X3))
proper.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(proper.1(X1), proper.1(X2), proper.0(X3))
f.0-0-1(ok.0(X1), ok.0(X2), ok.1(X3)) → ok.0(f.0-0-1(X1, X2, X3))
f.0-0-0(ok.0(X1), ok.0(X2), ok.0(X3)) → ok.0(f.0-0-0(X1, X2, X3))
f.1-0-0(X1, X2, mark.0(X3)) → mark.0(f.1-0-0(X1, X2, X3))
active.0(f.0-1-1(a., b., X)) → mark.0(f.1-1-1(X, X, X))
proper.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(proper.0(X1), proper.1(X2), proper.0(X3))
proper.0(c.) → ok.0(c.)
f.1-0-0(ok.1(X1), ok.0(X2), ok.0(X3)) → ok.0(f.1-0-0(X1, X2, X3))
f.0-0-0(X1, X2, mark.0(X3)) → mark.0(f.0-0-0(X1, X2, X3))
proper.0(f.0-1-1(X1, X2, X3)) → f.0-1-1(proper.0(X1), proper.1(X2), proper.1(X3))
active.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(X1, X2, active.0(X3))
proper.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(proper.0(X1), proper.0(X2), proper.0(X3))
f.1-0-1(ok.1(X1), ok.0(X2), ok.1(X3)) → ok.0(f.1-0-1(X1, X2, X3))
f.1-1-0(X1, X2, mark.0(X3)) → mark.0(f.1-1-0(X1, X2, X3))
proper.1(b.) → ok.1(b.)
f.1-1-0(X1, X2, mark.1(X3)) → mark.0(f.1-1-1(X1, X2, X3))
f.1-1-0(ok.1(X1), ok.1(X2), ok.0(X3)) → ok.0(f.1-1-0(X1, X2, X3))
active.0(c.) → mark.1(b.)
f.0-1-1(ok.0(X1), ok.1(X2), ok.1(X3)) → ok.0(f.0-1-1(X1, X2, X3))
proper.0(f.1-0-1(X1, X2, X3)) → f.1-0-1(proper.1(X1), proper.0(X2), proper.1(X3))
active.0(f.1-0-1(X1, X2, X3)) → f.1-0-0(X1, X2, active.1(X3))
f.0-1-0(ok.0(X1), ok.1(X2), ok.0(X3)) → ok.0(f.0-1-0(X1, X2, X3))
active.0(f.1-1-1(X1, X2, X3)) → f.1-1-0(X1, X2, active.1(X3))
proper.0(a.) → ok.0(a.)
f.0-1-0(X1, X2, mark.0(X3)) → mark.0(f.0-1-0(X1, X2, X3))
proper.0(f.0-0-1(X1, X2, X3)) → f.0-0-1(proper.0(X1), proper.0(X2), proper.1(X3))
f.0-0-0(X1, X2, mark.1(X3)) → mark.0(f.0-0-1(X1, X2, X3))
active.0(f.0-1-1(X1, X2, X3)) → f.0-1-0(X1, X2, active.1(X3))
f.0-1-0(X1, X2, mark.1(X3)) → mark.0(f.0-1-1(X1, X2, X3))
active.0(c.) → mark.0(a.)
proper.0(f.1-1-1(X1, X2, X3)) → f.1-1-1(proper.1(X1), proper.1(X2), proper.1(X3))
f.1-1-1(ok.1(X1), ok.1(X2), ok.1(X3)) → ok.0(f.1-1-1(X1, X2, X3))
active.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(X1, X2, active.0(X3))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
TOP.0(ok.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(x0, x1, active.0(x2)))
f.1-0-0(X1, X2, mark.1(X3)) → mark.0(f.1-0-1(X1, X2, X3))
proper.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(proper.1(X1), proper.0(X2), proper.0(X3))
active.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(X1, X2, active.0(X3))
active.0(f.0-0-1(X1, X2, X3)) → f.0-0-0(X1, X2, active.1(X3))
active.0(f.0-1-0(a., b., X)) → mark.0(f.0-0-0(X, X, X))
active.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(X1, X2, active.0(X3))
proper.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(proper.1(X1), proper.1(X2), proper.0(X3))
f.0-0-1(ok.0(X1), ok.0(X2), ok.1(X3)) → ok.0(f.0-0-1(X1, X2, X3))
f.0-0-0(ok.0(X1), ok.0(X2), ok.0(X3)) → ok.0(f.0-0-0(X1, X2, X3))
f.1-0-0(X1, X2, mark.0(X3)) → mark.0(f.1-0-0(X1, X2, X3))
active.0(f.0-1-1(a., b., X)) → mark.0(f.1-1-1(X, X, X))
proper.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(proper.0(X1), proper.1(X2), proper.0(X3))
proper.0(c.) → ok.0(c.)
f.1-0-0(ok.1(X1), ok.0(X2), ok.0(X3)) → ok.0(f.1-0-0(X1, X2, X3))
f.0-0-0(X1, X2, mark.0(X3)) → mark.0(f.0-0-0(X1, X2, X3))
proper.0(f.0-1-1(X1, X2, X3)) → f.0-1-1(proper.0(X1), proper.1(X2), proper.1(X3))
active.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(X1, X2, active.0(X3))
proper.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(proper.0(X1), proper.0(X2), proper.0(X3))
f.1-0-1(ok.1(X1), ok.0(X2), ok.1(X3)) → ok.0(f.1-0-1(X1, X2, X3))
f.1-1-0(X1, X2, mark.0(X3)) → mark.0(f.1-1-0(X1, X2, X3))
proper.1(b.) → ok.1(b.)
f.1-1-0(X1, X2, mark.1(X3)) → mark.0(f.1-1-1(X1, X2, X3))
f.1-1-0(ok.1(X1), ok.1(X2), ok.0(X3)) → ok.0(f.1-1-0(X1, X2, X3))
active.0(c.) → mark.1(b.)
f.0-1-1(ok.0(X1), ok.1(X2), ok.1(X3)) → ok.0(f.0-1-1(X1, X2, X3))
proper.0(f.1-0-1(X1, X2, X3)) → f.1-0-1(proper.1(X1), proper.0(X2), proper.1(X3))
active.0(f.1-0-1(X1, X2, X3)) → f.1-0-0(X1, X2, active.1(X3))
f.0-1-0(ok.0(X1), ok.1(X2), ok.0(X3)) → ok.0(f.0-1-0(X1, X2, X3))
active.0(f.1-1-1(X1, X2, X3)) → f.1-1-0(X1, X2, active.1(X3))
proper.0(a.) → ok.0(a.)
f.0-1-0(X1, X2, mark.0(X3)) → mark.0(f.0-1-0(X1, X2, X3))
proper.0(f.0-0-1(X1, X2, X3)) → f.0-0-1(proper.0(X1), proper.0(X2), proper.1(X3))
f.0-0-0(X1, X2, mark.1(X3)) → mark.0(f.0-0-1(X1, X2, X3))
active.0(f.0-1-1(X1, X2, X3)) → f.0-1-0(X1, X2, active.1(X3))
f.0-1-0(X1, X2, mark.1(X3)) → mark.0(f.0-1-1(X1, X2, X3))
active.0(c.) → mark.0(a.)
proper.0(f.1-1-1(X1, X2, X3)) → f.1-1-1(proper.1(X1), proper.1(X2), proper.1(X3))
f.1-1-1(ok.1(X1), ok.1(X2), ok.1(X3)) → ok.0(f.1-1-1(X1, X2, X3))
active.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(X1, X2, active.0(X3))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP.0(ok.0(f.1-0-0(x0, x1, x2))) → TOP.0(f.1-0-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.0-0-0(x0, x1, x2))) → TOP.0(f.0-0-0(x0, x1, active.0(x2)))
Used ordering: Polynomial interpretation [25]:
TOP.0(ok.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.0(x2)))
POL(TOP.0(x1)) = x1
POL(a.) = 0
POL(active.0(x1)) = 1 + x1
POL(active.1(x1)) = 0
POL(b.) = 0
POL(c.) = 1
POL(f.0-0-0(x1, x2, x3)) = 1 + x1
POL(f.0-0-1(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(f.0-1-0(x1, x2, x3)) = 1 + x3
POL(f.0-1-1(x1, x2, x3)) = x3
POL(f.1-0-0(x1, x2, x3)) = x2
POL(f.1-0-1(x1, x2, x3)) = 1 + x1 + x2
POL(f.1-1-0(x1, x2, x3)) = x3
POL(f.1-1-1(x1, x2, x3)) = 0
POL(mark.0(x1)) = 0
POL(mark.1(x1)) = 1 + x1
POL(ok.0(x1)) = 1 + x1
POL(ok.1(x1)) = 0
f.1-0-0(X1, X2, mark.1(X3)) → mark.0(f.1-0-1(X1, X2, X3))
active.0(f.1-0-1(X1, X2, X3)) → f.1-0-0(X1, X2, active.1(X3))
active.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(X1, X2, active.0(X3))
f.0-1-0(ok.0(X1), ok.1(X2), ok.0(X3)) → ok.0(f.0-1-0(X1, X2, X3))
active.0(f.0-0-1(X1, X2, X3)) → f.0-0-0(X1, X2, active.1(X3))
f.1-1-0(X1, X2, mark.1(X3)) → mark.0(f.1-1-1(X1, X2, X3))
f.1-1-0(ok.1(X1), ok.1(X2), ok.0(X3)) → ok.0(f.1-1-0(X1, X2, X3))
active.0(c.) → mark.1(b.)
active.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(X1, X2, active.0(X3))
f.0-0-0(ok.0(X1), ok.0(X2), ok.0(X3)) → ok.0(f.0-0-0(X1, X2, X3))
f.1-0-0(X1, X2, mark.0(X3)) → mark.0(f.1-0-0(X1, X2, X3))
active.0(f.0-1-1(a., b., X)) → mark.0(f.1-1-1(X, X, X))
f.1-1-0(X1, X2, mark.0(X3)) → mark.0(f.1-1-0(X1, X2, X3))
active.0(f.0-1-0(a., b., X)) → mark.0(f.0-0-0(X, X, X))
active.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(X1, X2, active.0(X3))
f.1-0-0(ok.1(X1), ok.0(X2), ok.0(X3)) → ok.0(f.1-0-0(X1, X2, X3))
f.0-0-0(X1, X2, mark.0(X3)) → mark.0(f.0-0-0(X1, X2, X3))
active.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(X1, X2, active.0(X3))
active.0(f.0-1-1(X1, X2, X3)) → f.0-1-0(X1, X2, active.1(X3))
f.0-0-0(X1, X2, mark.1(X3)) → mark.0(f.0-0-1(X1, X2, X3))
active.0(c.) → mark.0(a.)
f.0-1-0(X1, X2, mark.1(X3)) → mark.0(f.0-1-1(X1, X2, X3))
active.0(f.1-1-1(X1, X2, X3)) → f.1-1-0(X1, X2, active.1(X3))
f.0-1-0(X1, X2, mark.0(X3)) → mark.0(f.0-1-0(X1, X2, X3))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP.0(ok.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.0(x2)))
f.1-0-0(X1, X2, mark.1(X3)) → mark.0(f.1-0-1(X1, X2, X3))
proper.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(proper.1(X1), proper.0(X2), proper.0(X3))
active.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(X1, X2, active.0(X3))
active.0(f.0-0-1(X1, X2, X3)) → f.0-0-0(X1, X2, active.1(X3))
active.0(f.0-1-0(a., b., X)) → mark.0(f.0-0-0(X, X, X))
active.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(X1, X2, active.0(X3))
proper.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(proper.1(X1), proper.1(X2), proper.0(X3))
f.0-0-1(ok.0(X1), ok.0(X2), ok.1(X3)) → ok.0(f.0-0-1(X1, X2, X3))
f.0-0-0(ok.0(X1), ok.0(X2), ok.0(X3)) → ok.0(f.0-0-0(X1, X2, X3))
f.1-0-0(X1, X2, mark.0(X3)) → mark.0(f.1-0-0(X1, X2, X3))
active.0(f.0-1-1(a., b., X)) → mark.0(f.1-1-1(X, X, X))
proper.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(proper.0(X1), proper.1(X2), proper.0(X3))
proper.0(c.) → ok.0(c.)
f.1-0-0(ok.1(X1), ok.0(X2), ok.0(X3)) → ok.0(f.1-0-0(X1, X2, X3))
f.0-0-0(X1, X2, mark.0(X3)) → mark.0(f.0-0-0(X1, X2, X3))
proper.0(f.0-1-1(X1, X2, X3)) → f.0-1-1(proper.0(X1), proper.1(X2), proper.1(X3))
active.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(X1, X2, active.0(X3))
proper.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(proper.0(X1), proper.0(X2), proper.0(X3))
f.1-0-1(ok.1(X1), ok.0(X2), ok.1(X3)) → ok.0(f.1-0-1(X1, X2, X3))
f.1-1-0(X1, X2, mark.0(X3)) → mark.0(f.1-1-0(X1, X2, X3))
proper.1(b.) → ok.1(b.)
f.1-1-0(X1, X2, mark.1(X3)) → mark.0(f.1-1-1(X1, X2, X3))
f.1-1-0(ok.1(X1), ok.1(X2), ok.0(X3)) → ok.0(f.1-1-0(X1, X2, X3))
active.0(c.) → mark.1(b.)
f.0-1-1(ok.0(X1), ok.1(X2), ok.1(X3)) → ok.0(f.0-1-1(X1, X2, X3))
proper.0(f.1-0-1(X1, X2, X3)) → f.1-0-1(proper.1(X1), proper.0(X2), proper.1(X3))
active.0(f.1-0-1(X1, X2, X3)) → f.1-0-0(X1, X2, active.1(X3))
f.0-1-0(ok.0(X1), ok.1(X2), ok.0(X3)) → ok.0(f.0-1-0(X1, X2, X3))
active.0(f.1-1-1(X1, X2, X3)) → f.1-1-0(X1, X2, active.1(X3))
proper.0(a.) → ok.0(a.)
f.0-1-0(X1, X2, mark.0(X3)) → mark.0(f.0-1-0(X1, X2, X3))
proper.0(f.0-0-1(X1, X2, X3)) → f.0-0-1(proper.0(X1), proper.0(X2), proper.1(X3))
f.0-0-0(X1, X2, mark.1(X3)) → mark.0(f.0-0-1(X1, X2, X3))
active.0(f.0-1-1(X1, X2, X3)) → f.0-1-0(X1, X2, active.1(X3))
f.0-1-0(X1, X2, mark.1(X3)) → mark.0(f.0-1-1(X1, X2, X3))
active.0(c.) → mark.0(a.)
proper.0(f.1-1-1(X1, X2, X3)) → f.1-1-1(proper.1(X1), proper.1(X2), proper.1(X3))
f.1-1-1(ok.1(X1), ok.1(X2), ok.1(X3)) → ok.0(f.1-1-1(X1, X2, X3))
active.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(X1, X2, active.0(X3))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP.0(ok.0(f.1-1-0(x0, x1, x2))) → TOP.0(f.1-1-0(x0, x1, active.0(x2)))
TOP.0(ok.0(f.0-1-0(x0, x1, x2))) → TOP.0(f.0-1-0(x0, x1, active.0(x2)))
POL(TOP.0(x1)) = x1
POL(a.) = 0
POL(active.0(x1)) = 0
POL(active.1(x1)) = 0
POL(b.) = 0
POL(c.) = 0
POL(f.0-0-0(x1, x2, x3)) = 0
POL(f.0-0-1(x1, x2, x3)) = 0
POL(f.0-1-0(x1, x2, x3)) = 1 + x2
POL(f.0-1-1(x1, x2, x3)) = 0
POL(f.1-0-0(x1, x2, x3)) = 0
POL(f.1-0-1(x1, x2, x3)) = 0
POL(f.1-1-0(x1, x2, x3)) = x1
POL(f.1-1-1(x1, x2, x3)) = 0
POL(mark.0(x1)) = 0
POL(mark.1(x1)) = 0
POL(ok.0(x1)) = 1 + x1
POL(ok.1(x1)) = 1 + x1
f.0-1-0(ok.0(X1), ok.1(X2), ok.0(X3)) → ok.0(f.0-1-0(X1, X2, X3))
f.1-1-0(X1, X2, mark.1(X3)) → mark.0(f.1-1-1(X1, X2, X3))
f.1-1-0(ok.1(X1), ok.1(X2), ok.0(X3)) → ok.0(f.1-1-0(X1, X2, X3))
f.1-1-0(X1, X2, mark.0(X3)) → mark.0(f.1-1-0(X1, X2, X3))
f.0-1-0(X1, X2, mark.1(X3)) → mark.0(f.0-1-1(X1, X2, X3))
f.0-1-0(X1, X2, mark.0(X3)) → mark.0(f.0-1-0(X1, X2, X3))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f.1-0-0(X1, X2, mark.1(X3)) → mark.0(f.1-0-1(X1, X2, X3))
proper.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(proper.1(X1), proper.0(X2), proper.0(X3))
active.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(X1, X2, active.0(X3))
active.0(f.0-0-1(X1, X2, X3)) → f.0-0-0(X1, X2, active.1(X3))
active.0(f.0-1-0(a., b., X)) → mark.0(f.0-0-0(X, X, X))
active.0(f.1-0-0(X1, X2, X3)) → f.1-0-0(X1, X2, active.0(X3))
proper.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(proper.1(X1), proper.1(X2), proper.0(X3))
f.0-0-1(ok.0(X1), ok.0(X2), ok.1(X3)) → ok.0(f.0-0-1(X1, X2, X3))
f.0-0-0(ok.0(X1), ok.0(X2), ok.0(X3)) → ok.0(f.0-0-0(X1, X2, X3))
f.1-0-0(X1, X2, mark.0(X3)) → mark.0(f.1-0-0(X1, X2, X3))
active.0(f.0-1-1(a., b., X)) → mark.0(f.1-1-1(X, X, X))
proper.0(f.0-1-0(X1, X2, X3)) → f.0-1-0(proper.0(X1), proper.1(X2), proper.0(X3))
proper.0(c.) → ok.0(c.)
f.1-0-0(ok.1(X1), ok.0(X2), ok.0(X3)) → ok.0(f.1-0-0(X1, X2, X3))
f.0-0-0(X1, X2, mark.0(X3)) → mark.0(f.0-0-0(X1, X2, X3))
proper.0(f.0-1-1(X1, X2, X3)) → f.0-1-1(proper.0(X1), proper.1(X2), proper.1(X3))
active.0(f.1-1-0(X1, X2, X3)) → f.1-1-0(X1, X2, active.0(X3))
proper.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(proper.0(X1), proper.0(X2), proper.0(X3))
f.1-0-1(ok.1(X1), ok.0(X2), ok.1(X3)) → ok.0(f.1-0-1(X1, X2, X3))
f.1-1-0(X1, X2, mark.0(X3)) → mark.0(f.1-1-0(X1, X2, X3))
proper.1(b.) → ok.1(b.)
f.1-1-0(X1, X2, mark.1(X3)) → mark.0(f.1-1-1(X1, X2, X3))
f.1-1-0(ok.1(X1), ok.1(X2), ok.0(X3)) → ok.0(f.1-1-0(X1, X2, X3))
active.0(c.) → mark.1(b.)
f.0-1-1(ok.0(X1), ok.1(X2), ok.1(X3)) → ok.0(f.0-1-1(X1, X2, X3))
proper.0(f.1-0-1(X1, X2, X3)) → f.1-0-1(proper.1(X1), proper.0(X2), proper.1(X3))
active.0(f.1-0-1(X1, X2, X3)) → f.1-0-0(X1, X2, active.1(X3))
f.0-1-0(ok.0(X1), ok.1(X2), ok.0(X3)) → ok.0(f.0-1-0(X1, X2, X3))
active.0(f.1-1-1(X1, X2, X3)) → f.1-1-0(X1, X2, active.1(X3))
proper.0(a.) → ok.0(a.)
f.0-1-0(X1, X2, mark.0(X3)) → mark.0(f.0-1-0(X1, X2, X3))
proper.0(f.0-0-1(X1, X2, X3)) → f.0-0-1(proper.0(X1), proper.0(X2), proper.1(X3))
f.0-0-0(X1, X2, mark.1(X3)) → mark.0(f.0-0-1(X1, X2, X3))
active.0(f.0-1-1(X1, X2, X3)) → f.0-1-0(X1, X2, active.1(X3))
f.0-1-0(X1, X2, mark.1(X3)) → mark.0(f.0-1-1(X1, X2, X3))
active.0(c.) → mark.0(a.)
proper.0(f.1-1-1(X1, X2, X3)) → f.1-1-1(proper.1(X1), proper.1(X2), proper.1(X3))
f.1-1-1(ok.1(X1), ok.1(X2), ok.1(X3)) → ok.0(f.1-1-1(X1, X2, X3))
active.0(f.0-0-0(X1, X2, X3)) → f.0-0-0(X1, X2, active.0(X3))