and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
ADD(s(X), Y) → S(n__add(activate(X), activate(Y)))
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__s(X)) → S(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
IF(true, X, Y) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
AND(true, X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ADD(s(X), Y) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(0, X) → ACTIVATE(X)
ADD(s(X), Y) → ACTIVATE(X)
and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ADD(s(X), Y) → S(n__add(activate(X), activate(Y)))
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__s(X)) → S(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
IF(true, X, Y) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
AND(true, X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ADD(s(X), Y) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(0, X) → ACTIVATE(X)
ADD(s(X), Y) → ACTIVATE(X)
and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ADD(s(X), Y) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(0, X) → ACTIVATE(X)
ADD(s(X), Y) → ACTIVATE(X)
and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ADD(0, X) → ACTIVATE(X)
Used ordering: Polynomial interpretation [25,35]:
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ADD(s(X), Y) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(s(X), Y) → ACTIVATE(X)
The value of delta used in the strict ordering is 1.
POL(n__first(x1, x2)) = (4)x_1 + (7/4)x_2
POL(from(x1)) = (4)x_1
POL(activate(x1)) = x_1
POL(n__s(x1)) = (3/4)x_1
POL(0) = 1/4
POL(first(x1, x2)) = (4)x_1 + (7/4)x_2
POL(FROM(x1)) = (5/2)x_1
POL(add(x1, x2)) = (3)x_1 + x_2
POL(FIRST(x1, x2)) = (2)x_1 + (2)x_2
POL(cons(x1, x2)) = (3/4)x_1 + (3/4)x_2
POL(n__add(x1, x2)) = (3)x_1 + x_2
POL(n__from(x1)) = (4)x_1
POL(s(x1)) = (3/4)x_1
POL(ADD(x1, x2)) = (4)x_1 + (3/2)x_2
POL(ACTIVATE(x1)) = (3/2)x_1
POL(nil) = 1
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
add(X1, X2) → n__add(X1, X2)
from(X) → cons(activate(X), n__from(n__s(activate(X))))
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
first(0, X) → nil
activate(n__add(X1, X2)) → add(activate(X1), X2)
add(0, X) → activate(X)
s(X) → n__s(X)
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ADD(s(X), Y) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ADD(s(X), Y) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
ADD(s(X), Y) → ACTIVATE(Y)
ADD(s(X), Y) → ACTIVATE(X)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
Used ordering: Polynomial interpretation [25,35]:
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
The value of delta used in the strict ordering is 1/4.
POL(n__first(x1, x2)) = x_1 + (2)x_2
POL(from(x1)) = x_1
POL(activate(x1)) = x_1
POL(n__s(x1)) = x_1
POL(0) = 4
POL(first(x1, x2)) = x_1 + (2)x_2
POL(FROM(x1)) = (1/4)x_1
POL(add(x1, x2)) = 9/4 + (4)x_1 + (3/2)x_2
POL(FIRST(x1, x2)) = (1/4)x_1 + (1/2)x_2
POL(cons(x1, x2)) = (1/2)x_1 + (1/2)x_2
POL(n__add(x1, x2)) = 9/4 + (4)x_1 + (3/2)x_2
POL(n__from(x1)) = x_1
POL(s(x1)) = x_1
POL(ADD(x1, x2)) = 1/4 + (1/4)x_1 + (1/4)x_2
POL(ACTIVATE(x1)) = (1/4)x_1
POL(nil) = 15/4
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
add(X1, X2) → n__add(X1, X2)
from(X) → cons(activate(X), n__from(n__s(activate(X))))
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
first(0, X) → nil
activate(n__add(X1, X2)) → add(activate(X1), X2)
add(0, X) → activate(X)
s(X) → n__s(X)
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__from(X)) → FROM(X)
Used ordering: Polynomial interpretation [25,35]:
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
The value of delta used in the strict ordering is 1/2.
POL(n__first(x1, x2)) = (4)x_1 + (4)x_2
POL(from(x1)) = 1/2 + (2)x_1
POL(activate(x1)) = x_1
POL(n__s(x1)) = (1/2)x_1
POL(0) = 0
POL(first(x1, x2)) = (4)x_1 + (4)x_2
POL(FROM(x1)) = (5/4)x_1
POL(FIRST(x1, x2)) = (4)x_1 + (4)x_2
POL(cons(x1, x2)) = (1/4)x_1 + (1/2)x_2
POL(add(x1, x2)) = 1/2 + x_1 + (5/2)x_2
POL(n__add(x1, x2)) = 1/2 + x_1 + (5/2)x_2
POL(n__from(x1)) = 1/2 + (2)x_1
POL(s(x1)) = (1/2)x_1
POL(ACTIVATE(x1)) = x_1
POL(nil) = 0
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
add(X1, X2) → n__add(X1, X2)
from(X) → cons(activate(X), n__from(n__s(activate(X))))
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
first(0, X) → nil
activate(n__add(X1, X2)) → add(activate(X1), X2)
add(0, X) → activate(X)
s(X) → n__s(X)
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
Used ordering: Polynomial interpretation [25,35]:
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
The value of delta used in the strict ordering is 1/4.
POL(n__first(x1, x2)) = (3/2)x_1 + (2)x_2
POL(from(x1)) = 2 + x_1
POL(activate(x1)) = x_1
POL(n__s(x1)) = (3/4)x_1
POL(first(x1, x2)) = (3/2)x_1 + (2)x_2
POL(0) = 0
POL(FIRST(x1, x2)) = 1/4 + (3/4)x_1 + x_2
POL(cons(x1, x2)) = 1/2 + (1/2)x_1 + (1/2)x_2
POL(add(x1, x2)) = (5/4)x_2
POL(n__add(x1, x2)) = (5/4)x_2
POL(n__from(x1)) = 2 + x_1
POL(s(x1)) = (3/4)x_1
POL(ACTIVATE(x1)) = 1/2 + (1/2)x_1
POL(nil) = 0
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
add(X1, X2) → n__add(X1, X2)
from(X) → cons(activate(X), n__from(n__s(activate(X))))
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
first(0, X) → nil
activate(n__add(X1, X2)) → add(activate(X1), X2)
add(0, X) → activate(X)
s(X) → n__s(X)
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
From the DPs we obtained the following set of size-change graphs: