active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
ACTIVE(h(X)) → H(active(X))
H(ok(X)) → H(X)
ACTIVE(h(X)) → G(X, X)
G(mark(X1), X2) → G(X1, X2)
ACTIVE(g(X1, X2)) → G(active(X1), X2)
TOP(mark(X)) → PROPER(X)
ACTIVE(f(X1, X2)) → F(active(X1), X2)
F(ok(X1), ok(X2)) → F(X1, X2)
TOP(ok(X)) → ACTIVE(X)
PROPER(f(X1, X2)) → PROPER(X1)
PROPER(h(X)) → H(proper(X))
ACTIVE(f(X, X)) → H(a)
PROPER(g(X1, X2)) → PROPER(X2)
PROPER(f(X1, X2)) → PROPER(X2)
ACTIVE(g(a, X)) → F(b, X)
ACTIVE(h(X)) → ACTIVE(X)
F(mark(X1), X2) → F(X1, X2)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
PROPER(g(X1, X2)) → PROPER(X1)
TOP(ok(X)) → TOP(active(X))
ACTIVE(g(X1, X2)) → ACTIVE(X1)
G(ok(X1), ok(X2)) → G(X1, X2)
PROPER(h(X)) → PROPER(X)
PROPER(g(X1, X2)) → G(proper(X1), proper(X2))
TOP(mark(X)) → TOP(proper(X))
H(mark(X)) → H(X)
PROPER(f(X1, X2)) → F(proper(X1), proper(X2))
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVE(h(X)) → H(active(X))
H(ok(X)) → H(X)
ACTIVE(h(X)) → G(X, X)
G(mark(X1), X2) → G(X1, X2)
ACTIVE(g(X1, X2)) → G(active(X1), X2)
TOP(mark(X)) → PROPER(X)
ACTIVE(f(X1, X2)) → F(active(X1), X2)
F(ok(X1), ok(X2)) → F(X1, X2)
TOP(ok(X)) → ACTIVE(X)
PROPER(f(X1, X2)) → PROPER(X1)
PROPER(h(X)) → H(proper(X))
ACTIVE(f(X, X)) → H(a)
PROPER(g(X1, X2)) → PROPER(X2)
PROPER(f(X1, X2)) → PROPER(X2)
ACTIVE(g(a, X)) → F(b, X)
ACTIVE(h(X)) → ACTIVE(X)
F(mark(X1), X2) → F(X1, X2)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
PROPER(g(X1, X2)) → PROPER(X1)
TOP(ok(X)) → TOP(active(X))
ACTIVE(g(X1, X2)) → ACTIVE(X1)
G(ok(X1), ok(X2)) → G(X1, X2)
PROPER(h(X)) → PROPER(X)
PROPER(g(X1, X2)) → G(proper(X1), proper(X2))
TOP(mark(X)) → TOP(proper(X))
H(mark(X)) → H(X)
PROPER(f(X1, X2)) → F(proper(X1), proper(X2))
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
F(mark(X1), X2) → F(X1, X2)
F(ok(X1), ok(X2)) → F(X1, X2)
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
F(mark(X1), X2) → F(X1, X2)
F(ok(X1), ok(X2)) → F(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
G(mark(X1), X2) → G(X1, X2)
G(ok(X1), ok(X2)) → G(X1, X2)
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
G(mark(X1), X2) → G(X1, X2)
G(ok(X1), ok(X2)) → G(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
H(ok(X)) → H(X)
H(mark(X)) → H(X)
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
H(ok(X)) → H(X)
H(mark(X)) → H(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
PROPER(g(X1, X2)) → PROPER(X2)
PROPER(f(X1, X2)) → PROPER(X2)
PROPER(g(X1, X2)) → PROPER(X1)
PROPER(f(X1, X2)) → PROPER(X1)
PROPER(h(X)) → PROPER(X)
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
PROPER(g(X1, X2)) → PROPER(X2)
PROPER(f(X1, X2)) → PROPER(X2)
PROPER(g(X1, X2)) → PROPER(X1)
PROPER(h(X)) → PROPER(X)
PROPER(f(X1, X2)) → PROPER(X1)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
ACTIVE(g(X1, X2)) → ACTIVE(X1)
ACTIVE(h(X)) → ACTIVE(X)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
ACTIVE(g(X1, X2)) → ACTIVE(X1)
ACTIVE(h(X)) → ACTIVE(X)
ACTIVE(f(X1, X2)) → ACTIVE(X1)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
h(mark(X)) → mark(h(X))
g(mark(X1), X2) → mark(g(X1, X2))
f(mark(X1), X2) → mark(f(X1, X2))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
h(ok(X)) → ok(h(X))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
POL(TOP(x1)) = x1
POL(a) = 0
POL(active(x1)) = x1
POL(b) = 0
POL(f(x1, x2)) = 2·x1 + x2
POL(g(x1, x2)) = x1 + x2
POL(h(x1)) = 2·x1
POL(mark(x1)) = x1
POL(ok(x1)) = 2·x1
POL(proper(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
f(mark(X1), X2) → mark(f(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(mark(X1), X2) → mark(g(X1, X2))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
h(mark(X)) → mark(h(X))
h(ok(X)) → ok(h(X))
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
TOP(mark(f(x0, x1))) → TOP(f(proper(x0), proper(x1)))
TOP(mark(h(x0))) → TOP(h(proper(x0)))
TOP(mark(g(x0, x1))) → TOP(g(proper(x0), proper(x1)))
TOP(mark(b)) → TOP(ok(b))
TOP(mark(a)) → TOP(ok(a))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
TOP(mark(h(x0))) → TOP(h(proper(x0)))
TOP(mark(g(x0, x1))) → TOP(g(proper(x0), proper(x1)))
TOP(mark(f(x0, x1))) → TOP(f(proper(x0), proper(x1)))
TOP(mark(b)) → TOP(ok(b))
TOP(mark(a)) → TOP(ok(a))
TOP(ok(X)) → TOP(active(X))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
f(mark(X1), X2) → mark(f(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(mark(X1), X2) → mark(g(X1, X2))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
h(mark(X)) → mark(h(X))
h(ok(X)) → ok(h(X))
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
TOP(mark(h(x0))) → TOP(h(proper(x0)))
TOP(mark(g(x0, x1))) → TOP(g(proper(x0), proper(x1)))
TOP(mark(f(x0, x1))) → TOP(f(proper(x0), proper(x1)))
TOP(mark(b)) → TOP(ok(b))
TOP(ok(X)) → TOP(active(X))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
f(mark(X1), X2) → mark(f(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(mark(X1), X2) → mark(g(X1, X2))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
h(mark(X)) → mark(h(X))
h(ok(X)) → ok(h(X))
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
TOP(ok(h(x0))) → TOP(h(active(x0)))
TOP(ok(g(a, x0))) → TOP(mark(f(b, x0)))
TOP(ok(f(x0, x0))) → TOP(mark(h(a)))
TOP(ok(f(x0, x1))) → TOP(f(active(x0), x1))
TOP(ok(h(x0))) → TOP(mark(g(x0, x0)))
TOP(ok(a)) → TOP(mark(b))
TOP(ok(g(x0, x1))) → TOP(g(active(x0), x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
TOP(ok(h(x0))) → TOP(h(active(x0)))
TOP(ok(g(a, x0))) → TOP(mark(f(b, x0)))
TOP(mark(h(x0))) → TOP(h(proper(x0)))
TOP(mark(g(x0, x1))) → TOP(g(proper(x0), proper(x1)))
TOP(ok(f(x0, x0))) → TOP(mark(h(a)))
TOP(ok(f(x0, x1))) → TOP(f(active(x0), x1))
TOP(mark(f(x0, x1))) → TOP(f(proper(x0), proper(x1)))
TOP(ok(h(x0))) → TOP(mark(g(x0, x0)))
TOP(ok(a)) → TOP(mark(b))
TOP(ok(g(x0, x1))) → TOP(g(active(x0), x1))
TOP(mark(b)) → TOP(ok(b))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
f(mark(X1), X2) → mark(f(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(mark(X1), X2) → mark(g(X1, X2))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
h(mark(X)) → mark(h(X))
h(ok(X)) → ok(h(X))
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
TOP(ok(h(x0))) → TOP(h(active(x0)))
TOP(ok(g(a, x0))) → TOP(mark(f(b, x0)))
TOP(mark(h(x0))) → TOP(h(proper(x0)))
TOP(mark(g(x0, x1))) → TOP(g(proper(x0), proper(x1)))
TOP(ok(f(x0, x0))) → TOP(mark(h(a)))
TOP(ok(f(x0, x1))) → TOP(f(active(x0), x1))
TOP(mark(f(x0, x1))) → TOP(f(proper(x0), proper(x1)))
TOP(ok(h(x0))) → TOP(mark(g(x0, x0)))
TOP(ok(g(x0, x1))) → TOP(g(active(x0), x1))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
f(mark(X1), X2) → mark(f(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(mark(X1), X2) → mark(g(X1, X2))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
h(mark(X)) → mark(h(X))
h(ok(X)) → ok(h(X))
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-1(a., x0))) → TOP.0(mark.0(f.1-1(b., x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.1-1(x0, x0))) → TOP.0(mark.0(h.0(a.)))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(mark.0(g.0-0(x0, x0)))
TOP.0(ok.0(g.1-1(x0, x1))) → TOP.0(g.0-1(active.1(x0), x1))
TOP.0(ok.0(h.1(x0))) → TOP.0(mark.0(g.1-1(x0, x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(ok.0(f.0-0(x0, x0))) → TOP.0(mark.0(h.0(a.)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(ok.0(f.1-1(x0, x1))) → TOP.0(f.0-1(active.1(x0), x1))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(ok.0(h.1(x0))) → TOP.0(h.0(active.1(x0)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(ok.0(g.1-0(x0, x1))) → TOP.0(g.0-0(active.1(x0), x1))
TOP.0(ok.0(f.1-0(x0, x1))) → TOP.0(f.0-0(active.1(x0), x1))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
proper.1(b.) → ok.1(b.)
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
active.0(h.0(X)) → h.0(active.0(X))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → h.0(active.1(X))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
proper.0(h.0(X)) → h.0(proper.0(X))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ SemLabProof2
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-1(a., x0))) → TOP.0(mark.0(f.1-1(b., x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.1-1(x0, x0))) → TOP.0(mark.0(h.0(a.)))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(mark.0(g.0-0(x0, x0)))
TOP.0(ok.0(g.1-1(x0, x1))) → TOP.0(g.0-1(active.1(x0), x1))
TOP.0(ok.0(h.1(x0))) → TOP.0(mark.0(g.1-1(x0, x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(ok.0(f.0-0(x0, x0))) → TOP.0(mark.0(h.0(a.)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(ok.0(f.1-1(x0, x1))) → TOP.0(f.0-1(active.1(x0), x1))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(ok.0(h.1(x0))) → TOP.0(h.0(active.1(x0)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(ok.0(g.1-0(x0, x1))) → TOP.0(g.0-0(active.1(x0), x1))
TOP.0(ok.0(f.1-0(x0, x1))) → TOP.0(f.0-0(active.1(x0), x1))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
proper.1(b.) → ok.1(b.)
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
active.0(h.0(X)) → h.0(active.0(X))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → h.0(active.1(X))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
proper.0(h.0(X)) → h.0(proper.0(X))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(mark.0(g.0-0(x0, x0)))
TOP.0(ok.0(h.1(x0))) → TOP.0(mark.0(g.1-1(x0, x0)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(g.0-1(a., x0))) → TOP.0(mark.0(f.1-1(b., x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(ok.0(f.0-0(x0, x0))) → TOP.0(mark.0(h.0(a.)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(f.1-1(x0, x0))) → TOP.0(mark.0(h.0(a.)))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
proper.1(b.) → ok.1(b.)
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
active.0(h.0(X)) → h.0(active.0(X))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → h.0(active.1(X))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
proper.0(h.0(X)) → h.0(proper.0(X))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP.0(ok.0(h.0(x0))) → TOP.0(mark.0(g.0-0(x0, x0)))
TOP.0(ok.0(h.1(x0))) → TOP.0(mark.0(g.1-1(x0, x0)))
Used ordering: Polynomial interpretation [25]:
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(g.0-1(a., x0))) → TOP.0(mark.0(f.1-1(b., x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(ok.0(f.0-0(x0, x0))) → TOP.0(mark.0(h.0(a.)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(f.1-1(x0, x0))) → TOP.0(mark.0(h.0(a.)))
POL(TOP.0(x1)) = x1
POL(a.) = 0
POL(active.0(x1)) = 0
POL(active.1(x1)) = 0
POL(b.) = 0
POL(f.0-0(x1, x2)) = 1
POL(f.0-1(x1, x2)) = 1
POL(f.1-0(x1, x2)) = 0
POL(f.1-1(x1, x2)) = 1
POL(g.0-0(x1, x2)) = 0
POL(g.0-1(x1, x2)) = 1 + x2
POL(g.1-0(x1, x2)) = 0
POL(g.1-1(x1, x2)) = 0
POL(h.0(x1)) = 1
POL(h.1(x1)) = 1
POL(mark.0(x1)) = x1
POL(mark.1(x1)) = 0
POL(ok.0(x1)) = x1
POL(ok.1(x1)) = x1
POL(proper.0(x1)) = 0
POL(proper.1(x1)) = x1
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
proper.1(b.) → ok.1(b.)
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
h.0(ok.0(X)) → ok.0(h.0(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(g.0-1(a., x0))) → TOP.0(mark.0(f.1-1(b., x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(ok.0(f.0-0(x0, x0))) → TOP.0(mark.0(h.0(a.)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(f.1-1(x0, x0))) → TOP.0(mark.0(h.0(a.)))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
proper.1(b.) → ok.1(b.)
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
active.0(h.0(X)) → h.0(active.0(X))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → h.0(active.1(X))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
proper.0(h.0(X)) → h.0(proper.0(X))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP.0(ok.0(f.0-0(x0, x0))) → TOP.0(mark.0(h.0(a.)))
Used ordering: Polynomial interpretation [25]:
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(g.0-1(a., x0))) → TOP.0(mark.0(f.1-1(b., x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(f.1-1(x0, x0))) → TOP.0(mark.0(h.0(a.)))
POL(TOP.0(x1)) = x1
POL(a.) = 0
POL(active.0(x1)) = 0
POL(active.1(x1)) = 0
POL(b.) = 0
POL(f.0-0(x1, x2)) = 1
POL(f.0-1(x1, x2)) = 0
POL(f.1-0(x1, x2)) = 0
POL(f.1-1(x1, x2)) = 0
POL(g.0-0(x1, x2)) = 0
POL(g.0-1(x1, x2)) = 0
POL(g.1-0(x1, x2)) = 0
POL(g.1-1(x1, x2)) = 0
POL(h.0(x1)) = 0
POL(h.1(x1)) = 0
POL(mark.0(x1)) = x1
POL(mark.1(x1)) = 0
POL(ok.0(x1)) = x1
POL(ok.1(x1)) = 0
POL(proper.0(x1)) = 0
POL(proper.1(x1)) = 0
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
h.0(ok.0(X)) → ok.0(h.0(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(g.0-1(a., x0))) → TOP.0(mark.0(f.1-1(b., x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(f.1-1(x0, x0))) → TOP.0(mark.0(h.0(a.)))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
proper.1(b.) → ok.1(b.)
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
active.0(h.0(X)) → h.0(active.0(X))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → h.0(active.1(X))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
proper.0(h.0(X)) → h.0(proper.0(X))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP.0(ok.0(g.0-1(a., x0))) → TOP.0(mark.0(f.1-1(b., x0)))
Used ordering: Polynomial interpretation [25]:
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(f.1-1(x0, x0))) → TOP.0(mark.0(h.0(a.)))
POL(TOP.0(x1)) = x1
POL(a.) = 0
POL(active.0(x1)) = 0
POL(active.1(x1)) = 0
POL(b.) = 1
POL(f.0-0(x1, x2)) = 0
POL(f.0-1(x1, x2)) = 0
POL(f.1-0(x1, x2)) = 0
POL(f.1-1(x1, x2)) = 0
POL(g.0-0(x1, x2)) = 0
POL(g.0-1(x1, x2)) = 1
POL(g.1-0(x1, x2)) = 0
POL(g.1-1(x1, x2)) = 0
POL(h.0(x1)) = 0
POL(h.1(x1)) = 0
POL(mark.0(x1)) = x1
POL(mark.1(x1)) = 0
POL(ok.0(x1)) = x1
POL(ok.1(x1)) = 1 + x1
POL(proper.0(x1)) = 0
POL(proper.1(x1)) = 1 + x1
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
h.0(ok.0(X)) → ok.0(h.0(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(f.1-1(x0, x0))) → TOP.0(mark.0(h.0(a.)))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
proper.1(b.) → ok.1(b.)
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
active.0(h.0(X)) → h.0(active.0(X))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → h.0(active.1(X))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
proper.0(h.0(X)) → h.0(proper.0(X))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP.0(ok.0(f.1-1(x0, x0))) → TOP.0(mark.0(h.0(a.)))
Used ordering: Polynomial interpretation [25]:
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
POL(TOP.0(x1)) = x1
POL(a.) = 0
POL(active.0(x1)) = 0
POL(active.1(x1)) = 0
POL(b.) = 0
POL(f.0-0(x1, x2)) = 0
POL(f.0-1(x1, x2)) = 1
POL(f.1-0(x1, x2)) = 0
POL(f.1-1(x1, x2)) = 1
POL(g.0-0(x1, x2)) = 0
POL(g.0-1(x1, x2)) = 0
POL(g.1-0(x1, x2)) = 0
POL(g.1-1(x1, x2)) = 0
POL(h.0(x1)) = 0
POL(h.1(x1)) = 0
POL(mark.0(x1)) = x1
POL(mark.1(x1)) = 0
POL(ok.0(x1)) = x1
POL(ok.1(x1)) = 0
POL(proper.0(x1)) = 0
POL(proper.1(x1)) = 0
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
h.0(ok.0(X)) → ok.0(h.0(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
proper.1(b.) → ok.1(b.)
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
active.0(h.0(X)) → h.0(active.0(X))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → h.0(active.1(X))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
proper.0(h.0(X)) → h.0(proper.0(X))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP.0(ok.0(g.0-0(a., x0))) → TOP.0(mark.0(f.1-0(b., x0)))
Used ordering: Polynomial interpretation [25]:
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
POL(TOP.0(x1)) = x1
POL(a.) = 0
POL(active.0(x1)) = 0
POL(active.1(x1)) = 0
POL(b.) = 0
POL(f.0-0(x1, x2)) = 0
POL(f.0-1(x1, x2)) = 0
POL(f.1-0(x1, x2)) = 0
POL(f.1-1(x1, x2)) = 0
POL(g.0-0(x1, x2)) = 1
POL(g.0-1(x1, x2)) = x2
POL(g.1-0(x1, x2)) = 0
POL(g.1-1(x1, x2)) = 0
POL(h.0(x1)) = 0
POL(h.1(x1)) = 0
POL(mark.0(x1)) = x1
POL(mark.1(x1)) = 0
POL(ok.0(x1)) = x1
POL(ok.1(x1)) = x1
POL(proper.0(x1)) = 0
POL(proper.1(x1)) = 0
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
proper.1(b.) → ok.1(b.)
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
h.0(ok.0(X)) → ok.0(h.0(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
proper.1(b.) → ok.1(b.)
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
active.0(h.0(X)) → h.0(active.0(X))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → h.0(active.1(X))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
proper.0(h.0(X)) → h.0(proper.0(X))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP.0(mark.0(g.1-0(x0, x1))) → TOP.0(g.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(g.1-1(x0, x1))) → TOP.0(g.1-1(proper.1(x0), proper.1(x1)))
Used ordering: Polynomial interpretation [25]:
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
POL(TOP.0(x1)) = x1
POL(a.) = 1
POL(active.0(x1)) = x1
POL(active.1(x1)) = 0
POL(b.) = 0
POL(f.0-0(x1, x2)) = 1
POL(f.0-1(x1, x2)) = x1
POL(f.1-0(x1, x2)) = 1
POL(f.1-1(x1, x2)) = 1
POL(g.0-0(x1, x2)) = x1
POL(g.0-1(x1, x2)) = x1
POL(g.1-0(x1, x2)) = 0
POL(g.1-1(x1, x2)) = 0
POL(h.0(x1)) = 1
POL(h.1(x1)) = 1
POL(mark.0(x1)) = 1
POL(mark.1(x1)) = 1
POL(ok.0(x1)) = x1
POL(ok.1(x1)) = 0
POL(proper.0(x1)) = 1
POL(proper.1(x1)) = 0
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.1(X)) → h.0(active.1(X))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
proper.0(h.0(X)) → h.0(proper.0(X))
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
active.0(h.0(X)) → h.0(active.0(X))
h.0(mark.1(X)) → mark.0(h.1(X))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
proper.1(b.) → ok.1(b.)
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
active.0(h.0(X)) → h.0(active.0(X))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → h.0(active.1(X))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
proper.0(h.0(X)) → h.0(proper.0(X))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP.0(mark.0(f.1-0(x0, x1))) → TOP.0(f.1-0(proper.1(x0), proper.0(x1)))
TOP.0(mark.0(h.1(x0))) → TOP.0(h.1(proper.1(x0)))
TOP.0(mark.0(f.1-1(x0, x1))) → TOP.0(f.1-1(proper.1(x0), proper.1(x1)))
Used ordering: Polynomial interpretation [25]:
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
POL(TOP.0(x1)) = x1
POL(a.) = 0
POL(active.0(x1)) = 0
POL(active.1(x1)) = 0
POL(b.) = 1
POL(f.0-0(x1, x2)) = 1
POL(f.0-1(x1, x2)) = 1
POL(f.1-0(x1, x2)) = 0
POL(f.1-1(x1, x2)) = 0
POL(g.0-0(x1, x2)) = 1
POL(g.0-1(x1, x2)) = 1
POL(g.1-0(x1, x2)) = 0
POL(g.1-1(x1, x2)) = 0
POL(h.0(x1)) = 1
POL(h.1(x1)) = 0
POL(mark.0(x1)) = 1
POL(mark.1(x1)) = 0
POL(ok.0(x1)) = x1
POL(ok.1(x1)) = 0
POL(proper.0(x1)) = 0
POL(proper.1(x1)) = x1
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
h.0(ok.0(X)) → ok.0(h.0(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof2
TOP.0(mark.0(g.0-1(x0, x1))) → TOP.0(g.0-1(proper.0(x0), proper.1(x1)))
TOP.0(ok.0(g.0-1(x0, x1))) → TOP.0(g.0-1(active.0(x0), x1))
TOP.0(mark.0(f.0-1(x0, x1))) → TOP.0(f.0-1(proper.0(x0), proper.1(x1)))
TOP.0(mark.0(g.0-0(x0, x1))) → TOP.0(g.0-0(proper.0(x0), proper.0(x1)))
TOP.0(ok.0(f.0-1(x0, x1))) → TOP.0(f.0-1(active.0(x0), x1))
TOP.0(ok.0(g.0-0(x0, x1))) → TOP.0(g.0-0(active.0(x0), x1))
TOP.0(mark.0(h.0(x0))) → TOP.0(h.0(proper.0(x0)))
TOP.0(ok.0(h.0(x0))) → TOP.0(h.0(active.0(x0)))
TOP.0(ok.0(f.0-0(x0, x1))) → TOP.0(f.0-0(active.0(x0), x1))
TOP.0(mark.0(f.0-0(x0, x1))) → TOP.0(f.0-0(proper.0(x0), proper.0(x1)))
proper.0(h.1(X)) → h.1(proper.1(X))
active.0(g.0-0(a., X)) → mark.0(f.1-0(b., X))
h.0(ok.0(X)) → ok.0(h.0(X))
active.0(f.0-0(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → mark.0(g.1-1(X, X))
proper.0(f.1-1(X1, X2)) → f.1-1(proper.1(X1), proper.1(X2))
g.0-1(mark.1(X1), X2) → mark.0(g.1-1(X1, X2))
g.0-0(ok.0(X1), ok.0(X2)) → ok.0(g.0-0(X1, X2))
g.1-0(ok.1(X1), ok.0(X2)) → ok.0(g.1-0(X1, X2))
active.0(f.1-0(X1, X2)) → f.0-0(active.1(X1), X2)
proper.0(f.0-1(X1, X2)) → f.0-1(proper.0(X1), proper.1(X2))
proper.1(b.) → ok.1(b.)
f.0-0(mark.1(X1), X2) → mark.0(f.1-0(X1, X2))
f.0-1(ok.0(X1), ok.1(X2)) → ok.0(f.0-1(X1, X2))
h.0(mark.1(X)) → mark.0(h.1(X))
active.0(h.0(X)) → h.0(active.0(X))
proper.0(g.1-1(X1, X2)) → g.1-1(proper.1(X1), proper.1(X2))
f.0-0(ok.0(X1), ok.0(X2)) → ok.0(f.0-0(X1, X2))
active.0(f.0-0(X1, X2)) → f.0-0(active.0(X1), X2)
proper.0(f.1-0(X1, X2)) → f.1-0(proper.1(X1), proper.0(X2))
active.0(f.1-1(X1, X2)) → f.0-1(active.1(X1), X2)
active.0(g.0-1(a., X)) → mark.0(f.1-1(b., X))
proper.0(a.) → ok.0(a.)
active.0(g.1-0(X1, X2)) → g.0-0(active.1(X1), X2)
g.1-1(ok.1(X1), ok.1(X2)) → ok.0(g.1-1(X1, X2))
active.0(g.0-0(X1, X2)) → g.0-0(active.0(X1), X2)
proper.0(f.0-0(X1, X2)) → f.0-0(proper.0(X1), proper.0(X2))
g.0-0(mark.1(X1), X2) → mark.0(g.1-0(X1, X2))
active.0(g.0-1(X1, X2)) → g.0-1(active.0(X1), X2)
proper.0(g.1-0(X1, X2)) → g.1-0(proper.1(X1), proper.0(X2))
active.0(g.1-1(X1, X2)) → g.0-1(active.1(X1), X2)
active.0(a.) → mark.1(b.)
h.0(mark.0(X)) → mark.0(h.0(X))
h.1(ok.1(X)) → ok.0(h.1(X))
active.0(f.0-1(X1, X2)) → f.0-1(active.0(X1), X2)
proper.0(g.0-0(X1, X2)) → g.0-0(proper.0(X1), proper.0(X2))
active.0(f.1-1(X, X)) → mark.0(h.0(a.))
active.0(h.1(X)) → h.0(active.1(X))
f.1-0(ok.1(X1), ok.0(X2)) → ok.0(f.1-0(X1, X2))
f.1-1(ok.1(X1), ok.1(X2)) → ok.0(f.1-1(X1, X2))
f.0-0(mark.0(X1), X2) → mark.0(f.0-0(X1, X2))
f.0-1(mark.1(X1), X2) → mark.0(f.1-1(X1, X2))
f.0-1(mark.0(X1), X2) → mark.0(f.0-1(X1, X2))
active.0(h.0(X)) → mark.0(g.0-0(X, X))
g.0-1(mark.0(X1), X2) → mark.0(g.0-1(X1, X2))
proper.0(g.0-1(X1, X2)) → g.0-1(proper.0(X1), proper.1(X2))
proper.0(h.0(X)) → h.0(proper.0(X))
g.0-0(mark.0(X1), X2) → mark.0(g.0-0(X1, X2))
g.0-1(ok.0(X1), ok.1(X2)) → ok.0(g.0-1(X1, X2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
TOP(ok(h(x0))) → TOP(h(active(x0)))
TOP(mark(h(x0))) → TOP(h(proper(x0)))
TOP(mark(g(x0, x1))) → TOP(g(proper(x0), proper(x1)))
TOP(ok(f(x0, x1))) → TOP(f(active(x0), x1))
TOP(mark(f(x0, x1))) → TOP(f(proper(x0), proper(x1)))
TOP(ok(g(x0, x1))) → TOP(g(active(x0), x1))
proper(h(X)) → h(proper(X))
proper(g(X1, X2)) → g(proper(X1), proper(X2))
proper(a) → ok(a)
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(b) → ok(b)
f(mark(X1), X2) → mark(f(X1, X2))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(mark(X1), X2) → mark(g(X1, X2))
g(ok(X1), ok(X2)) → ok(g(X1, X2))
h(mark(X)) → mark(h(X))
h(ok(X)) → ok(h(X))
active(h(X)) → mark(g(X, X))
active(g(a, X)) → mark(f(b, X))
active(f(X, X)) → mark(h(a))
active(a) → mark(b)
active(h(X)) → h(active(X))
active(g(X1, X2)) → g(active(X1), X2)
active(f(X1, X2)) → f(active(X1), X2)