Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

AVER(sum, z) → GT(sum, double(z))
AVERAGE(x, y) → AVER(plus(x, y), 0)
DOUBLE(s(x)) → DOUBLE(x)
GT(s(x), s(y)) → GT(x, y)
IF(true, sum, z) → AVER(sum, s(z))
AVER(sum, z) → IF(gt(sum, double(z)), sum, z)
AVER(sum, z) → DOUBLE(z)
AVERAGE(x, y) → PLUS(x, y)
PLUS(s(x), y) → PLUS(x, y)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

AVER(sum, z) → GT(sum, double(z))
AVERAGE(x, y) → AVER(plus(x, y), 0)
DOUBLE(s(x)) → DOUBLE(x)
GT(s(x), s(y)) → GT(x, y)
IF(true, sum, z) → AVER(sum, s(z))
AVER(sum, z) → IF(gt(sum, double(z)), sum, z)
AVER(sum, z) → DOUBLE(z)
AVERAGE(x, y) → PLUS(x, y)
PLUS(s(x), y) → PLUS(x, y)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


DOUBLE(s(x)) → DOUBLE(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(DOUBLE(x1)) = (4)x_1   
POL(s(x1)) = 1 + (4)x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(x, y)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


PLUS(s(x), y) → PLUS(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(PLUS(x1, x2)) = (4)x_1   
POL(s(x1)) = 1 + (4)x_1   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GT(s(x), s(y)) → GT(x, y)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


GT(s(x), s(y)) → GT(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(s(x1)) = 4 + (2)x_1   
POL(GT(x1, x2)) = (3)x_2   
The value of delta used in the strict ordering is 12.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

IF(true, sum, z) → AVER(sum, s(z))
AVER(sum, z) → IF(gt(sum, double(z)), sum, z)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
double(0) → 0
double(s(x)) → s(s(double(x)))
average(x, y) → aver(plus(x, y), 0)
aver(sum, z) → if(gt(sum, double(z)), sum, z)
if(true, sum, z) → aver(sum, s(z))
if(false, sum, z) → z

Q is empty.
We have to consider all minimal (P,Q,R)-chains.