Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
MIN(min(X, Y), Z) → PLUS(Y, Z)
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
MIN(s(X), s(Y)) → MIN(X, Y)
QUOT(s(X), s(Y)) → MIN(X, Y)
MIN(min(X, Y), Z) → MIN(X, plus(Y, Z))
PLUS(s(X), Y) → PLUS(X, Y)
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MIN(min(X, Y), Z) → PLUS(Y, Z)
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
MIN(s(X), s(Y)) → MIN(X, Y)
QUOT(s(X), s(Y)) → MIN(X, Y)
MIN(min(X, Y), Z) → MIN(X, plus(Y, Z))
PLUS(s(X), Y) → PLUS(X, Y)
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(X), Y) → PLUS(X, Y)
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(X), Y) → PLUS(X, Y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- PLUS(s(X), Y) → PLUS(X, Y)
The graph contains the following edges 1 > 1, 2 >= 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MIN(s(X), s(Y)) → MIN(X, Y)
MIN(min(X, Y), Z) → MIN(X, plus(Y, Z))
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ MNOCProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MIN(s(X), s(Y)) → MIN(X, Y)
MIN(min(X, Y), Z) → MIN(X, plus(Y, Z))
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [15] to enlarge Q to all left-hand sides of R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MIN(s(X), s(Y)) → MIN(X, Y)
MIN(min(X, Y), Z) → MIN(X, plus(Y, Z))
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
The set Q consists of the following terms:
plus(0, x0)
plus(s(x0), x1)
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- MIN(s(X), s(Y)) → MIN(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
- MIN(min(X, Y), Z) → MIN(X, plus(Y, Z))
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
QUOT(s(X), s(Y)) → QUOT(min(X, Y), s(Y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( plus(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( min(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( QUOT(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
min(X, 0) → X
min(min(X, Y), Z) → min(X, plus(Y, Z))
min(s(X), s(Y)) → min(X, Y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.