p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))
↳ QTRS
↳ DependencyPairsProof
p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))
P(a(x0), p(a(b(x1)), x2)) → P(a(b(a(x2))), p(a(a(x1)), x2))
P(a(x0), p(a(b(x1)), x2)) → P(a(a(x1)), x2)
p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
P(a(x0), p(a(b(x1)), x2)) → P(a(b(a(x2))), p(a(a(x1)), x2))
P(a(x0), p(a(b(x1)), x2)) → P(a(a(x1)), x2)
p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P(a(x0), p(a(b(x1)), x2)) → P(a(a(x1)), x2)
Used ordering: Polynomial interpretation [25]:
P(a(x0), p(a(b(x1)), x2)) → P(a(b(a(x2))), p(a(a(x1)), x2))
POL(P(x1, x2)) = x2
POL(a(x1)) = 0
POL(b(x1)) = 0
POL(p(x1, x2)) = 1 + x2
p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
P(a(x0), p(a(b(x1)), x2)) → P(a(b(a(x2))), p(a(a(x1)), x2))
p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
P(a(x0), p(a(b(x1)), x2)) → P(a(b(a(x2))), p(a(a(x1)), x2))
[P2, p2, b1] > a1
P2: [2,1]
a1: multiset
b1: [1]
p2: [2,1]
p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
p(a(x0), p(a(b(x1)), x2)) → p(a(b(a(x2))), p(a(a(x1)), x2))