Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(p(p(x))))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

Q is empty.


QTRS
  ↳ AAECC Innermost

Q restricted rewrite system:
The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(p(p(x))))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

Q is empty.

We have applied [19,8] to switch to innermost. The TRS R 1 is

odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

The TRS R 2 is

cond(true, x) → cond(odd(x), p(p(p(x))))

The signature Sigma is {cond}

↳ QTRS
  ↳ AAECC Innermost
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(p(p(x))))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond(true, x0)
odd(0)
odd(s(0))
odd(s(s(x0)))
p(0)
p(s(x0))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)
COND(true, x) → P(x)
COND(true, x) → COND(odd(x), p(p(p(x))))
COND(true, x) → ODD(x)
COND(true, x) → P(p(x))
COND(true, x) → P(p(p(x)))

The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(p(p(x))))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond(true, x0)
odd(0)
odd(s(0))
odd(s(s(x0)))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)
COND(true, x) → P(x)
COND(true, x) → COND(odd(x), p(p(p(x))))
COND(true, x) → ODD(x)
COND(true, x) → P(p(x))
COND(true, x) → P(p(p(x)))

The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(p(p(x))))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond(true, x0)
odd(0)
odd(s(0))
odd(s(s(x0)))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 4 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)

The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(p(p(x))))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond(true, x0)
odd(0)
odd(s(0))
odd(s(s(x0)))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)

R is empty.
The set Q consists of the following terms:

cond(true, x0)
odd(0)
odd(s(0))
odd(s(s(x0)))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond(true, x0)
odd(0)
odd(s(0))
odd(s(s(x0)))
p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ODD(s(s(x))) → ODD(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND(true, x) → COND(odd(x), p(p(p(x))))

The TRS R consists of the following rules:

cond(true, x) → cond(odd(x), p(p(p(x))))
odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond(true, x0)
odd(0)
odd(s(0))
odd(s(s(x0)))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND(true, x) → COND(odd(x), p(p(p(x))))

The TRS R consists of the following rules:

odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond(true, x0)
odd(0)
odd(s(0))
odd(s(s(x0)))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond(true, x0)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

COND(true, x) → COND(odd(x), p(p(p(x))))

The TRS R consists of the following rules:

odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

odd(0)
odd(s(0))
odd(s(s(x0)))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


COND(true, x) → COND(odd(x), p(p(p(x))))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(odd(x1)) = (1/4)x_1   
POL(true) = 1/2   
POL(false) = 0   
POL(p(x1)) = (3/4)x_1   
POL(s(x1)) = 5/2 + (3)x_1   
POL(COND(x1, x2)) = (3/2)x_1 + (13/4)x_2   
POL(0) = 0   
The value of delta used in the strict ordering is 3/4.
The following usable rules [17] were oriented:

odd(s(0)) → true
odd(0) → false
p(0) → 0
odd(s(s(x))) → odd(x)
p(s(x)) → x



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

odd(0) → false
odd(s(0)) → true
odd(s(s(x))) → odd(x)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

odd(0)
odd(s(0))
odd(s(s(x0)))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.