cond(true, x) → cond(and(even(x), gr(x, 0)), p(x))
and(x, false) → false
and(false, x) → false
and(true, true) → true
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
↳ QTRS
↳ AAECC Innermost
cond(true, x) → cond(and(even(x), gr(x, 0)), p(x))
and(x, false) → false
and(false, x) → false
and(true, true) → true
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
and(x, false) → false
and(false, x) → false
and(true, true) → true
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x) → cond(and(even(x), gr(x, 0)), p(x))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
cond(true, x) → cond(and(even(x), gr(x, 0)), p(x))
and(x, false) → false
and(false, x) → false
and(true, true) → true
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x0)
and(x0, false)
and(false, x0)
and(true, true)
even(0)
even(s(0))
even(s(s(x0)))
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(y))
p(0)
p(s(x0))
COND(true, x) → P(x)
COND(true, x) → EVEN(x)
EVEN(s(s(x))) → EVEN(x)
COND(true, x) → GR(x, 0)
COND(true, x) → AND(even(x), gr(x, 0))
COND(true, x) → COND(and(even(x), gr(x, 0)), p(x))
GR(s(x), s(y)) → GR(x, y)
cond(true, x) → cond(and(even(x), gr(x, 0)), p(x))
and(x, false) → false
and(false, x) → false
and(true, true) → true
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x0)
and(x0, false)
and(false, x0)
and(true, true)
even(0)
even(s(0))
even(s(s(x0)))
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(y))
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
COND(true, x) → P(x)
COND(true, x) → EVEN(x)
EVEN(s(s(x))) → EVEN(x)
COND(true, x) → GR(x, 0)
COND(true, x) → AND(even(x), gr(x, 0))
COND(true, x) → COND(and(even(x), gr(x, 0)), p(x))
GR(s(x), s(y)) → GR(x, y)
cond(true, x) → cond(and(even(x), gr(x, 0)), p(x))
and(x, false) → false
and(false, x) → false
and(true, true) → true
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x0)
and(x0, false)
and(false, x0)
and(true, true)
even(0)
even(s(0))
even(s(s(x0)))
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(y))
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
EVEN(s(s(x))) → EVEN(x)
cond(true, x) → cond(and(even(x), gr(x, 0)), p(x))
and(x, false) → false
and(false, x) → false
and(true, true) → true
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x0)
and(x0, false)
and(false, x0)
and(true, true)
even(0)
even(s(0))
even(s(s(x0)))
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(y))
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
EVEN(s(s(x))) → EVEN(x)
cond(true, x0)
and(x0, false)
and(false, x0)
and(true, true)
even(0)
even(s(0))
even(s(s(x0)))
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(y))
p(0)
p(s(x0))
cond(true, x0)
and(x0, false)
and(false, x0)
and(true, true)
even(0)
even(s(0))
even(s(s(x0)))
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(y))
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
EVEN(s(s(x))) → EVEN(x)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
COND(true, x) → COND(and(even(x), gr(x, 0)), p(x))
cond(true, x) → cond(and(even(x), gr(x, 0)), p(x))
and(x, false) → false
and(false, x) → false
and(true, true) → true
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond(true, x0)
and(x0, false)
and(false, x0)
and(true, true)
even(0)
even(s(0))
even(s(s(x0)))
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(y))
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
COND(true, x) → COND(and(even(x), gr(x, 0)), p(x))
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
and(x, false) → false
and(false, x) → false
and(true, true) → true
p(0) → 0
p(s(x)) → x
cond(true, x0)
and(x0, false)
and(false, x0)
and(true, true)
even(0)
even(s(0))
even(s(s(x0)))
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(y))
p(0)
p(s(x0))
cond(true, x0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
COND(true, x) → COND(and(even(x), gr(x, 0)), p(x))
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
and(x, false) → false
and(false, x) → false
and(true, true) → true
p(0) → 0
p(s(x)) → x
and(x0, false)
and(false, x0)
and(true, true)
even(0)
even(s(0))
even(s(s(x0)))
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(y))
p(0)
p(s(x0))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
COND(true, x) → COND(and(even(x), gr(x, 0)), p(x))
The value of delta used in the strict ordering is 3/64.
POL(gr(x1, x2)) = 9/4 + (1/4)x_1
POL(even(x1)) = 3/4
POL(true) = 3
POL(false) = 0
POL(p(x1)) = (1/2)x_1
POL(s(x1)) = 4 + (2)x_1
POL(and(x1, x2)) = 9/4 + (1/4)x_2
POL(COND(x1, x2)) = (1/4)x_1 + (1/4)x_2
POL(0) = 0
gr(0, x) → false
and(false, x) → false
and(true, true) → true
gr(s(x), 0) → true
and(x, false) → false
p(0) → 0
p(s(x)) → x
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
gr(0, x) → false
gr(s(x), 0) → true
and(x, false) → false
and(false, x) → false
and(true, true) → true
p(0) → 0
p(s(x)) → x
and(x0, false)
and(false, x0)
and(true, true)
even(0)
even(s(0))
even(s(s(x0)))
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(y))
p(0)
p(s(x0))