cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
↳ QTRS
↳ AAECC Innermost
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
COND1(true, x, y, z) → GR(y, z)
COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND2(true, x, y, z) → P(y)
COND2(false, x, y, z) → P(x)
COND2(true, x, y, z) → GR(y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, x, y, z) → GR(x, z)
GR(s(x), s(y)) → GR(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
COND1(true, x, y, z) → GR(y, z)
COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND2(true, x, y, z) → P(y)
COND2(false, x, y, z) → P(x)
COND2(true, x, y, z) → GR(y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, x, y, z) → GR(x, z)
GR(s(x), s(y)) → GR(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
GR(s(x), s(y)) → GR(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
GR(s(x), s(y)) → GR(x, y)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
GR(s(x), s(y)) → GR(x, y)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
Used ordering: Polynomial interpretation [25,35]:
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
The value of delta used in the strict ordering is 1/4.
POL(COND2(x1, x2, x3, x4)) = 4 + (4)x_2 + (3/4)x_4
POL(gr(x1, x2)) = x_1
POL(true) = 5/4
POL(false) = 0
POL(p(x1)) = (1/4)x_1
POL(s(x1)) = 4 + (4)x_1
POL(0) = 0
POL(COND1(x1, x2, x3, x4)) = 15/4 + (7/4)x_1 + (4)x_2 + (3/4)x_4
gr(s(x), 0) → true
gr(0, x) → false
p(0) → 0
gr(s(x), s(y)) → gr(x, y)
p(s(x)) → x
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
The value of delta used in the strict ordering is 19/16.
POL(COND2(x1, x2, x3, x4)) = (4)x_1 + (13/4)x_3
POL(gr(x1, x2)) = 3/2 + (1/2)x_1
POL(true) = 2
POL(false) = 3/4
POL(p(x1)) = 1/4 + (1/4)x_1
POL(s(x1)) = 1 + (4)x_1
POL(0) = 0
gr(s(x), 0) → true
gr(0, x) → false
p(0) → 0
gr(s(x), s(y)) → gr(x, y)
p(s(x)) → x
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))