Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.


QTRS
  ↳ AAECC Innermost

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.

We have applied [19,8] to switch to innermost. The TRS R 1 is

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The TRS R 2 is

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)

The signature Sigma is {cond1, cond2}

↳ QTRS
  ↳ AAECC Innermost
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

COND1(true, x, y, z) → GR(y, z)
COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND2(true, x, y, z) → P(y)
COND2(false, x, y, z) → P(x)
COND2(true, x, y, z) → GR(y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, x, y, z) → GR(x, z)
GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, x, y, z) → GR(y, z)
COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND2(true, x, y, z) → P(y)
COND2(false, x, y, z) → P(x)
COND2(true, x, y, z) → GR(y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, x, y, z) → GR(x, z)
GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 5 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

R is empty.
The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), x, p(y), z)
cond2(false, x, y, z) → cond1(gr(x, z), p(x), y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


COND2(false, x, y, z) → COND1(gr(x, z), p(x), y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
The remaining pairs can at least be oriented weakly.

COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
Used ordering: Polynomial interpretation [25,35]:

POL(COND2(x1, x2, x3, x4)) = 4 + (4)x_2 + (3/4)x_4   
POL(gr(x1, x2)) = x_1   
POL(true) = 5/4   
POL(false) = 0   
POL(p(x1)) = (1/4)x_1   
POL(s(x1)) = 4 + (4)x_1   
POL(0) = 0   
POL(COND1(x1, x2, x3, x4)) = 15/4 + (7/4)x_1 + (4)x_2 + (3/4)x_4   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented:

gr(s(x), 0) → true
gr(0, x) → false
p(0) → 0
gr(s(x), s(y)) → gr(x, y)
p(s(x)) → x



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


COND2(true, x, y, z) → COND2(gr(y, z), x, p(y), z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(COND2(x1, x2, x3, x4)) = (4)x_1 + (13/4)x_3   
POL(gr(x1, x2)) = 3/2 + (1/2)x_1   
POL(true) = 2   
POL(false) = 3/4   
POL(p(x1)) = 1/4 + (1/4)x_1   
POL(s(x1)) = 1 + (4)x_1   
POL(0) = 0   
The value of delta used in the strict ordering is 19/16.
The following usable rules [17] were oriented:

gr(s(x), 0) → true
gr(0, x) → false
p(0) → 0
gr(s(x), s(y)) → gr(x, y)
p(s(x)) → x



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.