cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
↳ QTRS
↳ AAECC Innermost
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, x, y, z) → COND1(and(eq(x, y), gr(x, z)), x, y, z)
COND1(true, x, y, z) → GR(y, z)
COND2(false, x, y, z) → EQ(x, y)
COND2(true, x, y, z) → P(y)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, x, y, z) → AND(eq(x, y), gr(x, z))
COND2(true, x, y, z) → GR(y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
EQ(s(x), s(y)) → EQ(x, y)
COND2(false, x, y, z) → GR(x, z)
COND2(true, x, y, z) → P(x)
GR(s(x), s(y)) → GR(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
COND2(false, x, y, z) → COND1(and(eq(x, y), gr(x, z)), x, y, z)
COND1(true, x, y, z) → GR(y, z)
COND2(false, x, y, z) → EQ(x, y)
COND2(true, x, y, z) → P(y)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, x, y, z) → AND(eq(x, y), gr(x, z))
COND2(true, x, y, z) → GR(y, z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
EQ(s(x), s(y)) → EQ(x, y)
COND2(false, x, y, z) → GR(x, z)
COND2(true, x, y, z) → P(x)
GR(s(x), s(y)) → GR(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
EQ(s(x), s(y)) → EQ(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
EQ(s(x), s(y)) → EQ(x, y)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
EQ(s(x), s(y)) → EQ(x, y)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
GR(s(x), s(y)) → GR(x, y)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
GR(s(x), s(y)) → GR(x, y)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
GR(s(x), s(y)) → GR(x, y)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
COND2(false, x, y, z) → COND1(and(eq(x, y), gr(x, z)), x, y, z)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
cond1(true, x, y, z) → cond2(gr(y, z), x, y, z)
cond2(true, x, y, z) → cond2(gr(y, z), p(x), p(y), z)
cond2(false, x, y, z) → cond1(and(eq(x, y), gr(x, z)), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
COND2(false, x, y, z) → COND1(and(eq(x, y), gr(x, z)), x, y, z)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
COND2(false, x, y, z) → COND1(and(eq(x, y), gr(x, z)), x, y, z)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, 0, s(x0), y2) → COND1(and(false, gr(0, y2)), 0, s(x0), y2)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), 0, y2) → COND1(and(false, gr(s(x0), y2)), s(x0), 0, y2)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(and(eq(0, y1), false), 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
COND2(false, 0, s(x0), y2) → COND1(and(false, gr(0, y2)), 0, s(x0), y2)
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), 0, y2) → COND1(and(false, gr(s(x0), y2)), s(x0), 0, y2)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(and(eq(0, y1), false), 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), 0, y2) → COND1(and(false, gr(s(x0), y2)), s(x0), 0, y2)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(and(eq(0, y1), false), 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), 0, y2) → COND1(false, s(x0), 0, y2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), 0, y2) → COND1(false, s(x0), 0, y2)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(and(eq(0, y1), false), 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(and(eq(0, y1), false), 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, 0, y1, x0) → COND1(false, 0, y1, x0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, y1, x0) → COND1(false, 0, y1, x0)
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, 0, 0, y2) → COND1(and(true, gr(0, y2)), 0, 0, y2)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, 0, 0, y2) → COND1(and(true, false), 0, 0, y2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, 0, 0, y2) → COND1(and(true, false), 0, 0, y2)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
COND2(true, x, y, z) → COND2(gr(y, z), p(x), p(y), z)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), p(s(x0)), 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), p(s(x0)), s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), p(0), x0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), p(s(x0)), 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), p(s(x0)), s(x1))
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), p(0), x0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), p(s(x0)), s(x1))
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), p(0), x0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), p(0), x0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, y0, 0, x0) → COND2(false, p(y0), 0, x0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, x, y, z) → COND2(gr(y, z), x, y, z)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), 0, x0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(false, s(x0), y1, 0) → COND1(and(eq(s(x0), y1), true), s(x0), y1, 0)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
COND2(true, y0, 0, x0) → COND2(false, p(y0), 0, x0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), 0, 0) → COND1(and(false, true), s(x0), 0, 0)
COND2(false, s(x0), s(x1), 0) → COND1(and(eq(x0, x1), true), s(x0), s(x1), 0)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(false, s(x0), 0, 0) → COND1(and(false, true), s(x0), 0, 0)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(false, s(x0), s(x1), 0) → COND1(and(eq(x0, x1), true), s(x0), s(x1), 0)
COND2(true, y0, 0, x0) → COND2(false, p(y0), 0, x0)
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, y0, 0, x0) → COND2(false, p(y0), 0, x0)
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND2(true, 0, 0, y1) → COND2(false, 0, 0, y1)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(true, 0, 0, y1) → COND2(false, 0, 0, y1)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(x1), y2) → COND1(and(eq(x0, x1), gr(s(x0), y2)), s(x0), s(x1), y2)
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(s(x0), s(z2))), s(x0), s(z1), s(z2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(s(x0), s(z2))), s(x0), s(z1), s(z2))
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND1(true, y0, s(x0), 0) → COND2(true, y0, s(x0), 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(s(x0), s(z2))), s(x0), s(z1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
COND1(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), y0, s(x0), s(x1))
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
COND2(true, s(x0), 0, y1) → COND2(false, x0, 0, y1)
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(true, s(x0), 0, s(z2)) → COND2(false, x0, 0, s(z2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, y0, 0, x0) → COND2(false, y0, 0, x0)
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, s(x0), 0, s(z2)) → COND2(false, x0, 0, s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
COND2(false, s(x0), y1, s(x1)) → COND1(and(eq(s(x0), y1), gr(x0, x1)), s(x0), y1, s(x1))
COND2(true, s(x0), 0, s(z2)) → COND2(false, x0, 0, s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), s(y_2), s(x2)) → COND1(and(eq(s(x0), s(y_2)), gr(x0, x2)), s(x0), s(y_2), s(x2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(eq(s(x0), 0), gr(x0, x2)), s(x0), 0, s(x2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), s(y_2), s(x2)) → COND1(and(eq(s(x0), s(y_2)), gr(x0, x2)), s(x0), s(y_2), s(x2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(eq(s(x0), 0), gr(x0, x2)), s(x0), 0, s(x2))
COND2(true, s(x0), 0, s(z2)) → COND2(false, x0, 0, s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(eq(s(x0), 0), gr(x0, x2)), s(x0), 0, s(x2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(eq(s(x0), 0), gr(x0, x2)), s(x0), 0, s(x2))
eq(s(x), 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(eq(s(x0), 0), gr(x0, x2)), s(x0), 0, s(x2))
eq(s(x), 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), 0, s(x2)) → COND1(and(false, gr(x0, x2)), s(x0), 0, s(x2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(false, gr(x0, x2)), s(x0), 0, s(x2))
eq(s(x), 0) → false
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(false, gr(x0, x2)), s(x0), 0, s(x2))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(and(false, gr(x0, x2)), s(x0), 0, s(x2))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), 0, s(x2)) → COND1(false, s(x0), 0, s(x2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
COND1(true, s(z0), 0, s(z2)) → COND2(false, s(z0), 0, s(z2))
COND2(false, s(x0), 0, s(x2)) → COND1(false, s(x0), 0, s(x2))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND2(false, s(x0), s(y_2), s(x2)) → COND1(and(eq(s(x0), s(y_2)), gr(x0, x2)), s(x0), s(y_2), s(x2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
COND2(false, s(x0), s(y_2), s(x2)) → COND1(and(eq(x0, y_2), gr(x0, x2)), s(x0), s(y_2), s(x2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
Used ordering: Combined order from the following AFS and order.
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
[COND14, COND24] > eq2 > [true, gr, false, and, 0] > s1
COND24: [1,4,2,3]
gr: []
eq2: multiset
true: multiset
false: multiset
s1: multiset
and: []
0: multiset
COND14: [1,4,2,3]
p(s(x)) → x
p(0) → 0
gr(0, x) → false
gr(s(x), 0) → true
and(false, x) → false
and(x, false) → false
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDPOrderProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDPOrderProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
p(0)
p(s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonInfProof
↳ QDPOrderProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
(1) (COND1(and(eq(x3, x4), gr(x3, x5)), s(x3), s(x4), s(x5))=COND1(true, s(x6), s(x7), s(x8)) ⇒ COND1(true, s(x6), s(x7), s(x8))≥COND2(gr(x7, x8), s(x6), s(x7), s(x8)))
(2) (eq(x3, x4)=x18∧gr(x3, x5)=x19∧and(x18, x19)=true ⇒ COND1(true, s(x3), s(x4), s(x5))≥COND2(gr(x4, x5), s(x3), s(x4), s(x5)))
(3) (true=true∧eq(x3, x4)=true∧gr(x3, x5)=true ⇒ COND1(true, s(x3), s(x4), s(x5))≥COND2(gr(x4, x5), s(x3), s(x4), s(x5)))
(4) (eq(x3, x4)=true∧gr(x3, x5)=true ⇒ COND1(true, s(x3), s(x4), s(x5))≥COND2(gr(x4, x5), s(x3), s(x4), s(x5)))
(5) (true=true∧gr(0, x5)=true ⇒ COND1(true, s(0), s(0), s(x5))≥COND2(gr(0, x5), s(0), s(0), s(x5)))
(6) (eq(x24, x25)=true∧gr(s(x24), x5)=true∧(∀x26:eq(x24, x25)=true∧gr(x24, x26)=true ⇒ COND1(true, s(x24), s(x25), s(x26))≥COND2(gr(x25, x26), s(x24), s(x25), s(x26))) ⇒ COND1(true, s(s(x24)), s(s(x25)), s(x5))≥COND2(gr(s(x25), x5), s(s(x24)), s(s(x25)), s(x5)))
(7) (0=x27∧gr(x27, x5)=true ⇒ COND1(true, s(0), s(0), s(x5))≥COND2(gr(0, x5), s(0), s(0), s(x5)))
(8) (eq(x24, x25)=true∧s(x24)=x32∧gr(x32, x5)=true∧(∀x26:eq(x24, x25)=true∧gr(x24, x26)=true ⇒ COND1(true, s(x24), s(x25), s(x26))≥COND2(gr(x25, x26), s(x24), s(x25), s(x26))) ⇒ COND1(true, s(s(x24)), s(s(x25)), s(x5))≥COND2(gr(s(x25), x5), s(s(x24)), s(s(x25)), s(x5)))
(9) (true=true∧0=s(x29) ⇒ COND1(true, s(0), s(0), s(0))≥COND2(gr(0, 0), s(0), s(0), s(0)))
(10) (gr(x30, x31)=true∧0=s(x30)∧(gr(x30, x31)=true∧0=x30 ⇒ COND1(true, s(0), s(0), s(x31))≥COND2(gr(0, x31), s(0), s(0), s(x31))) ⇒ COND1(true, s(0), s(0), s(s(x31)))≥COND2(gr(0, s(x31)), s(0), s(0), s(s(x31))))
(11) (true=true∧eq(x24, x25)=true∧s(x24)=s(x34)∧(∀x26:eq(x24, x25)=true∧gr(x24, x26)=true ⇒ COND1(true, s(x24), s(x25), s(x26))≥COND2(gr(x25, x26), s(x24), s(x25), s(x26))) ⇒ COND1(true, s(s(x24)), s(s(x25)), s(0))≥COND2(gr(s(x25), 0), s(s(x24)), s(s(x25)), s(0)))
(12) (gr(x35, x36)=true∧eq(x24, x25)=true∧s(x24)=s(x35)∧(∀x26:eq(x24, x25)=true∧gr(x24, x26)=true ⇒ COND1(true, s(x24), s(x25), s(x26))≥COND2(gr(x25, x26), s(x24), s(x25), s(x26)))∧(∀x37,x38,x39:gr(x35, x36)=true∧eq(x37, x38)=true∧s(x37)=x35∧(∀x39:eq(x37, x38)=true∧gr(x37, x39)=true ⇒ COND1(true, s(x37), s(x38), s(x39))≥COND2(gr(x38, x39), s(x37), s(x38), s(x39))) ⇒ COND1(true, s(s(x37)), s(s(x38)), s(x36))≥COND2(gr(s(x38), x36), s(s(x37)), s(s(x38)), s(x36))) ⇒ COND1(true, s(s(x24)), s(s(x25)), s(s(x36)))≥COND2(gr(s(x25), s(x36)), s(s(x24)), s(s(x25)), s(s(x36))))
(13) (eq(x24, x25)=true ⇒ COND1(true, s(s(x24)), s(s(x25)), s(0))≥COND2(gr(s(x25), 0), s(s(x24)), s(s(x25)), s(0)))
(14) (gr(x35, x36)=true∧eq(x35, x25)=true∧(∀x26:eq(x35, x25)=true∧gr(x35, x26)=true ⇒ COND1(true, s(x35), s(x25), s(x26))≥COND2(gr(x25, x26), s(x35), s(x25), s(x26)))∧(∀x37,x38,x39:gr(x35, x36)=true∧eq(x37, x38)=true∧s(x37)=x35∧(∀x39:eq(x37, x38)=true∧gr(x37, x39)=true ⇒ COND1(true, s(x37), s(x38), s(x39))≥COND2(gr(x38, x39), s(x37), s(x38), s(x39))) ⇒ COND1(true, s(s(x37)), s(s(x38)), s(x36))≥COND2(gr(s(x38), x36), s(s(x37)), s(s(x38)), s(x36))) ⇒ COND1(true, s(s(x35)), s(s(x25)), s(s(x36)))≥COND2(gr(s(x25), s(x36)), s(s(x35)), s(s(x25)), s(s(x36))))
(15) (true=true ⇒ COND1(true, s(s(0)), s(s(0)), s(0))≥COND2(gr(s(0), 0), s(s(0)), s(s(0)), s(0)))
(16) (eq(x42, x43)=true∧(eq(x42, x43)=true ⇒ COND1(true, s(s(x42)), s(s(x43)), s(0))≥COND2(gr(s(x43), 0), s(s(x42)), s(s(x43)), s(0))) ⇒ COND1(true, s(s(s(x42))), s(s(s(x43))), s(0))≥COND2(gr(s(s(x43)), 0), s(s(s(x42))), s(s(s(x43))), s(0)))
(17) (COND1(true, s(s(0)), s(s(0)), s(0))≥COND2(gr(s(0), 0), s(s(0)), s(s(0)), s(0)))
(18) (COND1(true, s(s(x42)), s(s(x43)), s(0))≥COND2(gr(s(x43), 0), s(s(x42)), s(s(x43)), s(0)) ⇒ COND1(true, s(s(s(x42))), s(s(s(x43))), s(0))≥COND2(gr(s(s(x43)), 0), s(s(s(x42))), s(s(s(x43))), s(0)))
(19) (COND1(true, s(x35), s(x25), s(x36))≥COND2(gr(x25, x36), s(x35), s(x25), s(x36))∧(∀x37,x38,x39:gr(x35, x36)=true∧eq(x37, x38)=true∧s(x37)=x35∧(∀x39:eq(x37, x38)=true∧gr(x37, x39)=true ⇒ COND1(true, s(x37), s(x38), s(x39))≥COND2(gr(x38, x39), s(x37), s(x38), s(x39))) ⇒ COND1(true, s(s(x37)), s(s(x38)), s(x36))≥COND2(gr(s(x38), x36), s(s(x37)), s(s(x38)), s(x36))) ⇒ COND1(true, s(s(x35)), s(s(x25)), s(s(x36)))≥COND2(gr(s(x25), s(x36)), s(s(x35)), s(s(x25)), s(s(x36))))
(20) (COND1(true, s(x35), s(x25), s(x36))≥COND2(gr(x25, x36), s(x35), s(x25), s(x36)) ⇒ COND1(true, s(s(x35)), s(s(x25)), s(s(x36)))≥COND2(gr(s(x25), s(x36)), s(s(x35)), s(s(x25)), s(s(x36))))
(21) (COND2(gr(x10, x11), s(x9), s(x10), s(x11))=COND2(false, s(x12), s(x13), s(x14)) ⇒ COND2(false, s(x12), s(x13), s(x14))≥COND1(and(eq(x12, x13), gr(x12, x14)), s(x12), s(x13), s(x14)))
(22) (gr(x10, x11)=false ⇒ COND2(false, s(x9), s(x10), s(x11))≥COND1(and(eq(x9, x10), gr(x9, x11)), s(x9), s(x10), s(x11)))
(23) (false=false ⇒ COND2(false, s(x9), s(0), s(x44))≥COND1(and(eq(x9, 0), gr(x9, x44)), s(x9), s(0), s(x44)))
(24) (gr(x46, x47)=false∧(∀x48:gr(x46, x47)=false ⇒ COND2(false, s(x48), s(x46), s(x47))≥COND1(and(eq(x48, x46), gr(x48, x47)), s(x48), s(x46), s(x47))) ⇒ COND2(false, s(x9), s(s(x46)), s(s(x47)))≥COND1(and(eq(x9, s(x46)), gr(x9, s(x47))), s(x9), s(s(x46)), s(s(x47))))
(25) (COND2(false, s(x9), s(0), s(x44))≥COND1(and(eq(x9, 0), gr(x9, x44)), s(x9), s(0), s(x44)))
(26) (COND2(false, s(x9), s(x46), s(x47))≥COND1(and(eq(x9, x46), gr(x9, x47)), s(x9), s(x46), s(x47)) ⇒ COND2(false, s(x9), s(s(x46)), s(s(x47)))≥COND1(and(eq(x9, s(x46)), gr(x9, s(x47))), s(x9), s(s(x46)), s(s(x47))))
POL(0) = 0
POL(COND1(x1, x2, x3, x4)) = -1 - x1 + x3 - x4
POL(COND2(x1, x2, x3, x4)) = 1 - x1 - x3 + x4
POL(and(x1, x2)) = 0
POL(c) = -1
POL(eq(x1, x2)) = 0
POL(false) = 1
POL(gr(x1, x2)) = 0
POL(s(x1)) = 1 + x1
POL(true) = 0
The following pairs are in Pbound:
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
The following rules are usable:
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
true → gr(s(x), 0)
gr(x, y) → gr(s(x), s(y))
false → gr(0, x)
false → and(x, false)
true → and(true, true)
false → and(false, x)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonInfProof
↳ QDP
↳ DependencyGraphProof
↳ QDPOrderProof
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
COND2(true, y0, s(x0), s(x1)) → COND2(gr(x0, x1), p(y0), x0, s(x1))
Used ordering: Polynomial interpretation [25]:
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
POL(0) = 0
POL(COND1(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(COND2(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(and(x1, x2)) = 0
POL(eq(x1, x2)) = 0
POL(false) = 1
POL(gr(x1, x2)) = 1
POL(p(x1)) = x1
POL(s(x1)) = 1 + x1
POL(true) = 1
p(s(x)) → x
p(0) → 0
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Rewriting
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
↳ QDP
COND1(true, s(z0), s(x1), s(z2)) → COND2(gr(x1, z2), s(z0), s(x1), s(z2))
COND2(false, s(x0), s(z1), s(z2)) → COND1(and(eq(x0, z1), gr(x0, z2)), s(x0), s(z1), s(z2))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(x)) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
and(true, true) → true
and(false, x) → false
and(x, false) → false
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
p(0) → 0
p(s(x)) → x
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(s(x0), 0)
eq(0, s(x0))
eq(s(x0), s(x1))
and(true, true)
and(false, x0)
and(x0, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
COND2(true, y0, s(x0), 0) → COND2(true, p(y0), x0, 0)
p(0) → 0
p(s(x)) → x
p(0)
p(s(x0))
From the DPs we obtained the following set of size-change graphs: