fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
↳ QTRS
↳ AAECC Innermost
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
IF1(store, m, false) → EMPTY(fstsplit(m, app(map_f(self, nil), store)))
IF2(store, m, false) → MAP_F(self, nil)
IF1(store, m, false) → MAP_F(self, nil)
IF1(store, m, true) → FSTSPLIT(m, store)
APP(cons(h, t), x) → APP(t, x)
IF1(store, m, true) → EMPTY(fstsplit(m, store))
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
PROCESS(store, m) → LEQ(m, length(store))
LEQ(s(n), s(m)) → LEQ(n, m)
IF3(store, m, false) → SNDSPLIT(m, app(map_f(self, nil), store))
IF3(store, m, false) → APP(map_f(self, nil), store)
LENGTH(cons(h, t)) → LENGTH(t)
IF1(store, m, false) → FSTSPLIT(m, app(map_f(self, nil), store))
IF2(store, m, false) → SNDSPLIT(m, store)
IF3(store, m, false) → MAP_F(self, nil)
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
PROCESS(store, m) → LENGTH(store)
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF2(store, m, false) → APP(map_f(self, nil), sndsplit(m, store))
MAP_F(pid, cons(h, t)) → APP(f(pid, h), map_f(pid, t))
IF1(store, m, false) → APP(map_f(self, nil), store)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
IF1(store, m, false) → EMPTY(fstsplit(m, app(map_f(self, nil), store)))
IF2(store, m, false) → MAP_F(self, nil)
IF1(store, m, false) → MAP_F(self, nil)
IF1(store, m, true) → FSTSPLIT(m, store)
APP(cons(h, t), x) → APP(t, x)
IF1(store, m, true) → EMPTY(fstsplit(m, store))
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
PROCESS(store, m) → LEQ(m, length(store))
LEQ(s(n), s(m)) → LEQ(n, m)
IF3(store, m, false) → SNDSPLIT(m, app(map_f(self, nil), store))
IF3(store, m, false) → APP(map_f(self, nil), store)
LENGTH(cons(h, t)) → LENGTH(t)
IF1(store, m, false) → FSTSPLIT(m, app(map_f(self, nil), store))
IF2(store, m, false) → SNDSPLIT(m, store)
IF3(store, m, false) → MAP_F(self, nil)
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
PROCESS(store, m) → LENGTH(store)
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF2(store, m, false) → APP(map_f(self, nil), sndsplit(m, store))
MAP_F(pid, cons(h, t)) → APP(f(pid, h), map_f(pid, t))
IF1(store, m, false) → APP(map_f(self, nil), store)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
APP(cons(h, t), x) → APP(t, x)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
APP(cons(h, t), x) → APP(t, x)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
APP(cons(h, t), x) → APP(t, x)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LENGTH(cons(h, t)) → LENGTH(t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LENGTH(cons(h, t)) → LENGTH(t)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LENGTH(cons(h, t)) → LENGTH(t)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
LEQ(s(n), s(m)) → LEQ(n, m)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ QDP
LEQ(s(n), s(m)) → LEQ(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
LEQ(s(n), s(m)) → LEQ(n, m)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
map_f(pid, nil) → nil
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
map_f(x0, nil)
map_f(x0, cons(x1, x2))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(app(nil, sndsplit(m, store)), m)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(nil, store))))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, app(nil, store)), m)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
app(nil, x) → x
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
app(nil, x0)
app(cons(x0, x1), x2)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
IF1(x0, 0, true) → IF2(x0, 0, empty(nil))
IF1(nil, s(x0), true) → IF2(nil, s(x0), empty(nil))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
IF1(x0, 0, true) → IF2(x0, 0, empty(nil))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
IF1(nil, s(x0), true) → IF2(nil, s(x0), empty(nil))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0))
PROCESS(y0, 0) → IF1(y0, 0, true)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
PROCESS(y0, 0) → IF1(y0, 0, true)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, store)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
IF1(nil, s(x0), false) → IF3(nil, s(x0), empty(nil))
IF1(x0, 0, false) → IF3(x0, 0, empty(nil))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF1(nil, s(x0), false) → IF3(nil, s(x0), empty(nil))
IF1(x0, 0, false) → IF3(x0, 0, empty(nil))
PROCESS(nil, y1) → IF1(nil, y1, leq(y1, 0))
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), empty(cons(x1, fstsplit(x0, x2))))
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(cons(h, t)) → false
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(store, m, false) → PROCESS(sndsplit(m, store), m)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
IF2(x0, 0, false) → PROCESS(x0, 0)
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF2(nil, s(x0), false) → PROCESS(nil, s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF2(nil, s(x0), false) → PROCESS(nil, s(x0))
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF2(x0, 0, false) → PROCESS(x0, 0)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF3(store, m, false) → PROCESS(sndsplit(m, store), m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
IF3(nil, s(x0), false) → PROCESS(nil, s(x0))
IF3(x0, 0, false) → PROCESS(x0, 0)
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
IF3(nil, s(x0), false) → PROCESS(nil, s(x0))
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
IF3(x0, 0, false) → PROCESS(x0, 0)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
PROCESS(cons(x0, x1), y1) → IF1(cons(x0, x1), y1, leq(y1, s(length(x1))))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(s(z2), s(length(x1))))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(s(z2), s(length(x1))))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IF2(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
IF3(cons(x1, x2), s(x0), false) → PROCESS(sndsplit(x0, x2), s(x0))
Used ordering: Polynomial interpretation [25]:
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
POL(0) = 0
POL(IF1(x1, x2, x3)) = x1
POL(IF2(x1, x2, x3)) = x1
POL(IF3(x1, x2, x3)) = x1
POL(PROCESS(x1, x2)) = x1
POL(cons(x1, x2)) = 1 + x1 + x2
POL(false) = 0
POL(length(x1)) = x1
POL(leq(x1, x2)) = 0
POL(nil) = 0
POL(s(x1)) = 0
POL(sndsplit(x1, x2)) = x2
POL(true) = 0
sndsplit(s(n), nil) → nil
sndsplit(0, x) → x
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
↳ QTRS
↳ AAECC Innermost
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Rewriting
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
IF1(cons(x1, x2), s(x0), false) → IF3(cons(x1, x2), s(x0), false)
PROCESS(cons(x0, x1), s(z2)) → IF1(cons(x0, x1), s(z2), leq(z2, length(x1)))
IF1(cons(x1, x2), s(x0), true) → IF2(cons(x1, x2), s(x0), false)
length(nil) → 0
length(cons(h, t)) → s(length(t))
leq(0, m) → true
leq(s(n), s(m)) → leq(n, m)
leq(s(n), 0) → false
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))