a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
L(r(a(a(x1)))) → A(l(c(c(c(r(x1))))))
A(l(x1)) → L(a(x1))
L(r(a(a(x1)))) → C(r(x1))
C(a(r(x1))) → A(x1)
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
A(c(x1)) → A(x1)
L(r(a(a(x1)))) → L(c(c(c(r(x1)))))
L(r(a(a(x1)))) → C(c(r(x1)))
A(l(x1)) → A(x1)
A(c(x1)) → C(a(x1))
L(r(a(a(x1)))) → C(c(c(r(x1))))
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
L(r(a(a(x1)))) → A(l(c(c(c(r(x1))))))
A(l(x1)) → L(a(x1))
L(r(a(a(x1)))) → C(r(x1))
C(a(r(x1))) → A(x1)
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
A(c(x1)) → A(x1)
L(r(a(a(x1)))) → L(c(c(c(r(x1)))))
L(r(a(a(x1)))) → C(c(r(x1)))
A(l(x1)) → A(x1)
A(c(x1)) → C(a(x1))
L(r(a(a(x1)))) → C(c(c(r(x1))))
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
↳ QTRS Reverse
L(r(a(a(x1)))) → A(l(c(c(c(r(x1))))))
A(l(x1)) → L(a(x1))
C(a(r(x1))) → A(x1)
A(c(x1)) → A(x1)
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
A(l(x1)) → A(x1)
A(c(x1)) → C(a(x1))
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
A(l(x1)) → A(x1)
POL(A(x1)) = x1
POL(C(x1)) = x1
POL(L(x1)) = 2 + 2·x1
POL(a(x1)) = x1
POL(c(x1)) = x1
POL(l(x1)) = 2 + 2·x1
POL(r(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
↳ QTRS Reverse
A(l(x1)) → L(a(x1))
L(r(a(a(x1)))) → A(l(c(c(c(r(x1))))))
C(a(r(x1))) → A(x1)
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
A(c(x1)) → A(x1)
A(c(x1)) → C(a(x1))
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
C(a(r(x1))) → A(x1)
POL(A(x1)) = x1
POL(C(x1)) = x1
POL(L(x1)) = x1
POL(a(x1)) = x1
POL(c(x1)) = x1
POL(l(x1)) = x1
POL(r(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
L(r(a(a(x1)))) → A(l(c(c(c(r(x1))))))
A(l(x1)) → L(a(x1))
A(c(x1)) → A(x1)
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
A(c(x1)) → C(a(x1))
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
↳ QTRS Reverse
L(r(a(a(x1)))) → A(l(c(c(c(r(x1))))))
A(l(x1)) → L(a(x1))
A(c(x1)) → A(x1)
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
L(r(a(a(x1)))) → A(l(c(c(c(r(x1))))))
POL(A(x1)) = 2 + 2·x1
POL(L(x1)) = x1
POL(a(x1)) = 2 + 2·x1
POL(c(x1)) = x1
POL(l(x1)) = x1
POL(r(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
A(l(x1)) → L(a(x1))
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
A(c(x1)) → A(x1)
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(c(x1)) → A(x1)
Used ordering: Polynomial Order [21,25] with Interpretation:
A(l(x1)) → L(a(x1))
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
POL( A(x1) ) = x1
POL( r(x1) ) = max{0, x1 - 1}
POL( c(x1) ) = x1 + 1
POL( l(x1) ) = max{0, -1}
POL( a(x1) ) = x1
POL( L(x1) ) = max{0, -1}
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
a(l(x1)) → l(a(x1))
c(a(r(x1))) → r(a(x1))
a(c(x1)) → c(a(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
A(l(x1)) → L(a(x1))
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(l(x1)) → L(a(x1))
Used ordering: Polynomial interpretation [25,35]:
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
The value of delta used in the strict ordering is 1/4.
POL(c(x1)) = (1/2)x_1
POL(l(x1)) = 1/2 + (4)x_1
POL(a(x1)) = (2)x_1
POL(L(x1)) = 1/4 + (2)x_1
POL(A(x1)) = x_1
POL(r(x1)) = 3/4
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
a(l(x1)) → l(a(x1))
c(a(r(x1))) → r(a(x1))
a(c(x1)) → c(a(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
L(r(a(a(x1)))) → A(a(l(c(c(c(r(x1)))))))
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
l(a(x)) → a(l(x))
c(a(x)) → a(c(x))
r(a(c(x))) → a(r(x))
a(a(r(l(x)))) → r(c(c(c(l(a(a(x)))))))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
l(a(x)) → a(l(x))
c(a(x)) → a(c(x))
r(a(c(x))) → a(r(x))
a(a(r(l(x)))) → r(c(c(c(l(a(a(x)))))))
a(l(x1)) → l(a(x1))
a(c(x1)) → c(a(x1))
c(a(r(x1))) → r(a(x1))
l(r(a(a(x1)))) → a(a(l(c(c(c(r(x1)))))))
l(a(x)) → a(l(x))
c(a(x)) → a(c(x))
r(a(c(x))) → a(r(x))
a(a(r(l(x)))) → r(c(c(c(l(a(a(x)))))))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
l(a(x)) → a(l(x))
c(a(x)) → a(c(x))
r(a(c(x))) → a(r(x))
a(a(r(l(x)))) → r(c(c(c(l(a(a(x)))))))