a(a(b(x1))) → b(a(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(c(x1)) → c(b(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
a(a(b(x1))) → b(a(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(c(x1)) → c(b(x1))
B(a(a(x1))) → A(b(x1))
B(a(a(x1))) → A(a(a(b(x1))))
A(c(x1)) → B(x1)
A(a(b(x1))) → A(x1)
B(a(a(x1))) → B(x1)
B(a(a(x1))) → A(a(b(x1)))
A(a(b(x1))) → B(a(x1))
a(a(b(x1))) → b(a(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(c(x1)) → c(b(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
↳ QTRS Reverse
B(a(a(x1))) → A(b(x1))
B(a(a(x1))) → A(a(a(b(x1))))
A(c(x1)) → B(x1)
A(a(b(x1))) → A(x1)
B(a(a(x1))) → B(x1)
B(a(a(x1))) → A(a(b(x1)))
A(a(b(x1))) → B(a(x1))
a(a(b(x1))) → b(a(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(c(x1)) → c(b(x1))
A(c(x1)) → B(x1)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(c(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
B(a(a(x1))) → A(a(a(b(x1))))
B(a(a(x1))) → A(b(x1))
A(a(b(x1))) → A(x1)
B(a(a(x1))) → A(a(b(x1)))
B(a(a(x1))) → B(x1)
A(a(b(x1))) → B(a(x1))
a(a(b(x1))) → b(a(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(c(x1)) → c(b(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(a(b(x1))) → A(x1)
Used ordering: Polynomial Order [21,25] with Interpretation:
B(a(a(x1))) → A(a(a(b(x1))))
B(a(a(x1))) → A(b(x1))
B(a(a(x1))) → A(a(b(x1)))
B(a(a(x1))) → B(x1)
A(a(b(x1))) → B(a(x1))
POL( A(x1) ) = x1
POL( c(x1) ) = max{0, -1}
POL( b(x1) ) = x1 + 1
POL( B(x1) ) = x1 + 1
POL( a(x1) ) = x1
a(c(x1)) → c(b(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(a(b(x1))) → b(a(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
B(a(a(x1))) → A(b(x1))
B(a(a(x1))) → A(a(a(b(x1))))
B(a(a(x1))) → B(x1)
B(a(a(x1))) → A(a(b(x1)))
A(a(b(x1))) → B(a(x1))
a(a(b(x1))) → b(a(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(c(x1)) → c(b(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(a(a(x1))) → A(b(x1))
B(a(a(x1))) → A(a(a(b(x1))))
B(a(a(x1))) → B(x1)
B(a(a(x1))) → A(a(b(x1)))
A(a(b(x1))) → B(a(x1))
POL(A(x1)) = 3 + 2·x1
POL(B(x1)) = 4·x1
POL(a(x1)) = 1 + x1
POL(b(x1)) = 2·x1
POL(c(x1)) = 0
a(c(x1)) → c(b(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(a(b(x1))) → b(a(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QTRS Reverse
↳ QTRS Reverse
a(a(b(x1))) → b(a(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(c(x1)) → c(b(x1))
a(a(b(x1))) → b(a(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(c(x1)) → c(b(x1))
b(a(a(x))) → a(b(x))
a(a(b(x))) → b(a(a(a(x))))
c(a(x)) → b(c(x))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
b(a(a(x))) → a(b(x))
a(a(b(x))) → b(a(a(a(x))))
c(a(x)) → b(c(x))
a(a(b(x1))) → b(a(x1))
b(a(a(x1))) → a(a(a(b(x1))))
a(c(x1)) → c(b(x1))
b(a(a(x))) → a(b(x))
a(a(b(x))) → b(a(a(a(x))))
c(a(x)) → b(c(x))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
b(a(a(x))) → a(b(x))
a(a(b(x))) → b(a(a(a(x))))
c(a(x)) → b(c(x))