c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
C(c(c(a(x1)))) → D(x1)
C(c(c(a(x1)))) → D(d(x1))
B(c(x1)) → B(a(c(x1)))
D(x1) → C(x1)
D(x1) → B(c(x1))
D(b(x1)) → C(x1)
D(b(x1)) → C(c(x1))
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
C(c(c(a(x1)))) → D(x1)
C(c(c(a(x1)))) → D(d(x1))
B(c(x1)) → B(a(c(x1)))
D(x1) → C(x1)
D(x1) → B(c(x1))
D(b(x1)) → C(x1)
D(b(x1)) → C(c(x1))
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
C(c(c(a(x1)))) → D(x1)
C(c(c(a(x1)))) → D(d(x1))
D(x1) → C(x1)
D(b(x1)) → C(x1)
D(b(x1)) → C(c(x1))
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C(c(c(a(x1)))) → D(x1)
D(x1) → C(x1)
D(b(x1)) → C(x1)
Used ordering: Polynomial interpretation [25]:
C(c(c(a(x1)))) → D(d(x1))
D(b(x1)) → C(c(x1))
POL(C(x1)) = 4·x1
POL(D(x1)) = 12 + 4·x1
POL(a(x1)) = x1
POL(b(x1)) = 3 + x1
POL(c(x1)) = 6 + x1
POL(d(x1)) = 9 + x1
c(x1) → a(a(x1))
b(c(x1)) → b(a(c(x1)))
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
d(x1) → b(c(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
C(c(c(a(x1)))) → D(d(x1))
D(b(x1)) → C(c(x1))
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
C(c(c(a(b(x0))))) → D(c(c(x0)))
C(c(c(a(x0)))) → D(b(c(x0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS Reverse
↳ QTRS Reverse
C(c(c(a(b(x0))))) → D(c(c(x0)))
C(c(c(a(x0)))) → D(b(c(x0)))
D(b(x1)) → C(c(x1))
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
C(c(c(a(b(x0))))) → D(c(c(x0)))
C(c(c(a(x0)))) → D(b(c(x0)))
D(b(x1)) → C(c(x1))
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
C(c(c(a(b(x0))))) → D(c(c(x0)))
C(c(c(a(x0)))) → D(b(c(x0)))
D(b(x1)) → C(c(x1))
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
b(a(c(c(C(x))))) → c(c(D(x)))
a(c(c(C(x)))) → c(b(D(x)))
b(D(x)) → c(C(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
b(a(c(c(C(x))))) → c(c(D(x)))
a(c(c(C(x)))) → c(b(D(x)))
b(D(x)) → c(C(x))
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
b(a(c(c(C(x))))) → c(c(D(x)))
a(c(c(C(x)))) → c(b(D(x)))
b(D(x)) → c(C(x))
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
c(x) → a(a(x))
d(x) → b(c(x))
C(c(c(a(b(x))))) → D(c(c(x)))
C(c(c(a(x)))) → D(b(c(x)))
D(b(x)) → C(c(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
c(x) → a(a(x))
d(x) → b(c(x))
C(c(c(a(b(x))))) → D(c(c(x)))
C(c(c(a(x)))) → D(b(c(x)))
D(b(x)) → C(c(x))
A(c(c(c(x)))) → D1(x)
C1(b(x)) → A(b(x))
B(d(x)) → C1(x)
D1(x) → C1(b(x))
A(c(c(C(x)))) → B(D(x))
A(c(c(C(x)))) → C1(b(D(x)))
C1(b(x)) → C1(a(b(x)))
D1(x) → B(x)
B(d(x)) → C1(c(x))
A(c(c(c(x)))) → D1(d(x))
B(a(c(c(C(x))))) → C1(c(D(x)))
C1(x) → A(x)
B(D(x)) → C1(C(x))
C1(x) → A(a(x))
B(a(c(c(C(x))))) → C1(D(x))
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
b(a(c(c(C(x))))) → c(c(D(x)))
a(c(c(C(x)))) → c(b(D(x)))
b(D(x)) → c(C(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
A(c(c(c(x)))) → D1(x)
C1(b(x)) → A(b(x))
B(d(x)) → C1(x)
D1(x) → C1(b(x))
A(c(c(C(x)))) → B(D(x))
A(c(c(C(x)))) → C1(b(D(x)))
C1(b(x)) → C1(a(b(x)))
D1(x) → B(x)
B(d(x)) → C1(c(x))
A(c(c(c(x)))) → D1(d(x))
B(a(c(c(C(x))))) → C1(c(D(x)))
C1(x) → A(x)
B(D(x)) → C1(C(x))
C1(x) → A(a(x))
B(a(c(c(C(x))))) → C1(D(x))
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
b(a(c(c(C(x))))) → c(c(D(x)))
a(c(c(C(x)))) → c(b(D(x)))
b(D(x)) → c(C(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(c(c(C(x)))) → B(D(x))
A(c(c(C(x)))) → C1(b(D(x)))
B(a(c(c(C(x))))) → C1(c(D(x)))
B(D(x)) → C1(C(x))
B(a(c(c(C(x))))) → C1(D(x))
Used ordering: Polynomial interpretation [25]:
A(c(c(c(x)))) → D1(x)
C1(b(x)) → A(b(x))
B(d(x)) → C1(x)
D1(x) → C1(b(x))
C1(b(x)) → C1(a(b(x)))
D1(x) → B(x)
B(d(x)) → C1(c(x))
A(c(c(c(x)))) → D1(d(x))
C1(x) → A(x)
C1(x) → A(a(x))
POL(A(x1)) = 12 + 2·x1
POL(B(x1)) = 12 + 15·x1
POL(C(x1)) = 4 + 6·x1
POL(C1(x1)) = 12 + 5·x1
POL(D(x1)) = 8 + 12·x1
POL(D1(x1)) = 12 + 15·x1
POL(a(x1)) = x1
POL(b(x1)) = 2·x1
POL(c(x1)) = 4·x1
POL(d(x1)) = 8·x1
b(a(c(c(C(x))))) → c(c(D(x)))
c(b(x)) → c(a(b(x)))
a(c(c(C(x)))) → c(b(D(x)))
c(x) → a(a(x))
a(c(c(c(x)))) → d(d(x))
d(x) → c(b(x))
b(d(x)) → c(c(x))
b(D(x)) → c(C(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
B(d(x)) → C1(c(x))
A(c(c(c(x)))) → D1(x)
A(c(c(c(x)))) → D1(d(x))
C1(b(x)) → A(b(x))
B(d(x)) → C1(x)
C1(x) → A(x)
C1(x) → A(a(x))
D1(x) → C1(b(x))
D1(x) → B(x)
C1(b(x)) → C1(a(b(x)))
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
b(a(c(c(C(x))))) → c(c(D(x)))
a(c(c(C(x)))) → c(b(D(x)))
b(D(x)) → c(C(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(d(x)) → C1(c(x))
A(c(c(c(x)))) → D1(x)
A(c(c(c(x)))) → D1(d(x))
B(d(x)) → C1(x)
D1(x) → C1(b(x))
D1(x) → B(x)
Used ordering: Polynomial interpretation [25]:
C1(b(x)) → A(b(x))
C1(x) → A(x)
C1(x) → A(a(x))
C1(b(x)) → C1(a(b(x)))
POL(A(x1)) = x1
POL(B(x1)) = x1
POL(C(x1)) = 1
POL(C1(x1)) = x1
POL(D(x1)) = 2
POL(D1(x1)) = 2 + x1
POL(a(x1)) = x1
POL(b(x1)) = 1 + x1
POL(c(x1)) = 2 + x1
POL(d(x1)) = 3 + x1
b(a(c(c(C(x))))) → c(c(D(x)))
c(b(x)) → c(a(b(x)))
a(c(c(C(x)))) → c(b(D(x)))
c(x) → a(a(x))
a(c(c(c(x)))) → d(d(x))
d(x) → c(b(x))
b(d(x)) → c(c(x))
b(D(x)) → c(C(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS Reverse
C1(b(x)) → A(b(x))
C1(x) → A(x)
C1(x) → A(a(x))
C1(b(x)) → C1(a(b(x)))
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
b(a(c(c(C(x))))) → c(c(D(x)))
a(c(c(C(x)))) → c(b(D(x)))
b(D(x)) → c(C(x))
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
b(a(c(c(C(x))))) → c(c(D(x)))
a(c(c(C(x)))) → c(b(D(x)))
b(D(x)) → c(C(x))
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
c(x) → a(a(x))
d(x) → b(c(x))
C(c(c(a(b(x))))) → D(c(c(x)))
C(c(c(a(x)))) → D(b(c(x)))
D(b(x)) → C(c(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDPToSRSProof
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
c(c(c(a(x)))) → d(d(x))
d(b(x)) → c(c(x))
b(c(x)) → b(a(c(x)))
c(x) → a(a(x))
d(x) → b(c(x))
C(c(c(a(b(x))))) → D(c(c(x)))
C(c(c(a(x)))) → D(b(c(x)))
D(b(x)) → C(c(x))
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
c(c(c(a(x1)))) → d(d(x1))
d(b(x1)) → c(c(x1))
b(c(x1)) → b(a(c(x1)))
c(x1) → a(a(x1))
d(x1) → b(c(x1))
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
a(c(c(c(x)))) → d(d(x))
b(d(x)) → c(c(x))
c(b(x)) → c(a(b(x)))
c(x) → a(a(x))
d(x) → c(b(x))