Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)

Q is empty.


QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)

The set Q is empty.
We have obtained the following QTRS:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A(c(x1)) → D(d(d(x1)))
F(f(x1)) → A(x1)
A(b(x1)) → B(d(x1))
C(f(x1)) → C(x1)
A(b(x1)) → D(x1)
B(d(x1)) → A(c(b(x1)))
A(c(x1)) → D(x1)
B(d(x1)) → C(b(x1))
C(f(x1)) → D(d(c(x1)))
A(c(x1)) → D(d(x1))
D(d(x1)) → F(x1)
B(d(x1)) → B(x1)
C(f(x1)) → D(c(x1))

The TRS R consists of the following rules:

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
QDP
      ↳ RuleRemovalProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(c(x1)) → D(d(d(x1)))
F(f(x1)) → A(x1)
A(b(x1)) → B(d(x1))
C(f(x1)) → C(x1)
A(b(x1)) → D(x1)
B(d(x1)) → A(c(b(x1)))
A(c(x1)) → D(x1)
B(d(x1)) → C(b(x1))
C(f(x1)) → D(d(c(x1)))
A(c(x1)) → D(d(x1))
D(d(x1)) → F(x1)
B(d(x1)) → B(x1)
C(f(x1)) → D(c(x1))

The TRS R consists of the following rules:

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

A(b(x1)) → D(x1)


Used ordering: POLO with Polynomial interpretation [25]:

POL(A(x1)) = x1   
POL(B(x1)) = 1 + x1   
POL(C(x1)) = x1   
POL(D(x1)) = x1   
POL(F(x1)) = x1   
POL(a(x1)) = x1   
POL(b(x1)) = 1 + x1   
POL(c(x1)) = x1   
POL(d(x1)) = x1   
POL(f(x1)) = x1   



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
QDP
          ↳ QDPOrderProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(d(x1)) → C(b(x1))
C(f(x1)) → D(d(c(x1)))
A(c(x1)) → D(d(x1))
F(f(x1)) → A(x1)
A(c(x1)) → D(d(d(x1)))
A(b(x1)) → B(d(x1))
D(d(x1)) → F(x1)
C(f(x1)) → C(x1)
B(d(x1)) → B(x1)
B(d(x1)) → A(c(b(x1)))
A(c(x1)) → D(x1)
C(f(x1)) → D(c(x1))

The TRS R consists of the following rules:

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


B(d(x1)) → C(b(x1))
A(c(x1)) → D(d(x1))
A(c(x1)) → D(d(d(x1)))
C(f(x1)) → C(x1)
B(d(x1)) → B(x1)
A(c(x1)) → D(x1)
C(f(x1)) → D(c(x1))
The remaining pairs can at least be oriented weakly.

C(f(x1)) → D(d(c(x1)))
F(f(x1)) → A(x1)
A(b(x1)) → B(d(x1))
D(d(x1)) → F(x1)
B(d(x1)) → A(c(b(x1)))
Used ordering: Polynomial interpretation [25,35]:

POL(C(x1)) = x_1   
POL(f(x1)) = 2 + x_1   
POL(c(x1)) = x_1   
POL(B(x1)) = (4)x_1   
POL(D(x1)) = 1 + x_1   
POL(a(x1)) = 4 + x_1   
POL(A(x1)) = 4 + x_1   
POL(d(x1)) = 1 + x_1   
POL(b(x1)) = (4)x_1   
POL(F(x1)) = 2 + x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented:

a(c(x1)) → d(d(d(x1)))
d(d(x1)) → f(x1)
b(d(x1)) → a(c(b(x1)))
a(b(x1)) → b(d(x1))
f(f(x1)) → a(x1)
c(f(x1)) → d(d(c(x1)))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

C(f(x1)) → D(d(c(x1)))
F(f(x1)) → A(x1)
A(b(x1)) → B(d(x1))
D(d(x1)) → F(x1)
B(d(x1)) → A(c(b(x1)))

The TRS R consists of the following rules:

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ Narrowing
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A(b(x1)) → B(d(x1))
B(d(x1)) → A(c(b(x1)))

The TRS R consists of the following rules:

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(d(x1)) → A(c(b(x1))) at position [0] we obtained the following new rules:

B(d(d(x0))) → A(c(a(c(b(x0)))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
QDP
                      ↳ QDPToSRSProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(d(d(x0))) → A(c(a(c(b(x0)))))
A(b(x1)) → B(d(x1))

The TRS R consists of the following rules:

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
QTRS
                          ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)
B(d(d(x0))) → A(c(a(c(b(x0)))))
A(b(x1)) → B(d(x1))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)
B(d(d(x0))) → A(c(a(c(b(x0)))))
A(b(x1)) → B(d(x1))

The set Q is empty.
We have obtained the following QTRS:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
QTRS
                              ↳ QTRS Reverse
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

The set Q is empty.
We have obtained the following QTRS:

a(b(x)) → b(d(x))
a(c(x)) → d(d(d(x)))
b(d(x)) → a(c(b(x)))
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
B(d(d(x))) → A(c(a(c(b(x)))))
A(b(x)) → B(d(x))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
QTRS
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x)) → b(d(x))
a(c(x)) → d(d(d(x)))
b(d(x)) → a(c(b(x)))
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
B(d(d(x))) → A(c(a(c(b(x)))))
A(b(x)) → B(d(x))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

The set Q is empty.
We have obtained the following QTRS:

a(b(x)) → b(d(x))
a(c(x)) → d(d(d(x)))
b(d(x)) → a(c(b(x)))
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
B(d(d(x))) → A(c(a(c(b(x)))))
A(b(x)) → B(d(x))

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ QTRS Reverse
QTRS
                              ↳ DependencyPairsProof
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(b(x)) → b(d(x))
a(c(x)) → d(d(d(x)))
b(d(x)) → a(c(b(x)))
c(f(x)) → d(d(c(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
B(d(d(x))) → A(c(a(c(b(x)))))
A(b(x)) → B(d(x))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

D(d(B(x))) → C(a(c(A(x))))
C(a(x)) → D(d(d(x)))
B1(a(x)) → B1(x)
F(c(x)) → C(d(d(x)))
C(a(x)) → D(d(x))
B1(A(x)) → D(B(x))
D(d(B(x))) → C(A(x))
B1(a(x)) → D(b(x))
D(b(x)) → B1(c(a(x)))
D(b(x)) → C(a(x))
D(d(x)) → F(x)
F(c(x)) → D(x)
D(d(B(x))) → B1(c(a(c(A(x)))))
F(c(x)) → D(d(x))
C(a(x)) → D(x)

The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
QDP
                                  ↳ DependencyGraphProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

D(d(B(x))) → C(a(c(A(x))))
C(a(x)) → D(d(d(x)))
B1(a(x)) → B1(x)
F(c(x)) → C(d(d(x)))
C(a(x)) → D(d(x))
B1(A(x)) → D(B(x))
D(d(B(x))) → C(A(x))
B1(a(x)) → D(b(x))
D(b(x)) → B1(c(a(x)))
D(b(x)) → C(a(x))
D(d(x)) → F(x)
F(c(x)) → D(x)
D(d(B(x))) → B1(c(a(c(A(x)))))
F(c(x)) → D(d(x))
C(a(x)) → D(x)

The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
QDP
                                      ↳ RuleRemovalProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

D(d(B(x))) → C(a(c(A(x))))
C(a(x)) → D(d(d(x)))
B1(a(x)) → B1(x)
F(c(x)) → C(d(d(x)))
C(a(x)) → D(d(x))
D(b(x)) → B1(c(a(x)))
B1(a(x)) → D(b(x))
D(b(x)) → C(a(x))
D(d(x)) → F(x)
F(c(x)) → D(x)
D(d(B(x))) → B1(c(a(c(A(x)))))
F(c(x)) → D(d(x))
C(a(x)) → D(x)

The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D(d(B(x))) → C(a(c(A(x))))
D(b(x)) → C(a(x))


Used ordering: POLO with Polynomial interpretation [25]:

POL(A(x1)) = x1   
POL(B(x1)) = 2 + x1   
POL(B1(x1)) = 2 + x1   
POL(C(x1)) = x1   
POL(D(x1)) = x1   
POL(F(x1)) = x1   
POL(a(x1)) = x1   
POL(b(x1)) = 2 + x1   
POL(c(x1)) = x1   
POL(d(x1)) = x1   
POL(f(x1)) = x1   



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
QDP
                                          ↳ QDPOrderProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(x)) → D(b(x))
D(b(x)) → B1(c(a(x)))
C(a(x)) → D(d(d(x)))
B1(a(x)) → B1(x)
F(c(x)) → C(d(d(x)))
D(d(x)) → F(x)
F(c(x)) → D(x)
C(a(x)) → D(d(x))
D(d(B(x))) → B1(c(a(c(A(x)))))
F(c(x)) → D(d(x))
C(a(x)) → D(x)

The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


F(c(x)) → C(d(d(x)))
F(c(x)) → D(x)
F(c(x)) → D(d(x))
The remaining pairs can at least be oriented weakly.

B1(a(x)) → D(b(x))
D(b(x)) → B1(c(a(x)))
C(a(x)) → D(d(d(x)))
B1(a(x)) → B1(x)
D(d(x)) → F(x)
C(a(x)) → D(d(x))
D(d(B(x))) → B1(c(a(c(A(x)))))
C(a(x)) → D(x)
Used ordering: Polynomial Order [21,25] with Interpretation:

POL( C(x1) ) = x1 + 1


POL( f(x1) ) = x1


POL( c(x1) ) = x1 + 1


POL( D(x1) ) = x1 + 1


POL( B(x1) ) = 0


POL( a(x1) ) = x1


POL( B1(x1) ) = 1


POL( A(x1) ) = x1


POL( b(x1) ) = max{0, -1}


POL( d(x1) ) = x1


POL( F(x1) ) = x1 + 1



The following usable rules [17] were oriented:

b(A(x)) → d(B(x))
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
c(a(x)) → d(d(d(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
d(b(x)) → b(c(a(x)))
b(a(x)) → d(b(x))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
                                        ↳ QDP
                                          ↳ QDPOrderProof
QDP
                                              ↳ DependencyGraphProof
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

D(b(x)) → B1(c(a(x)))
B1(a(x)) → D(b(x))
C(a(x)) → D(d(d(x)))
B1(a(x)) → B1(x)
D(d(x)) → F(x)
C(a(x)) → D(d(x))
D(d(B(x))) → B1(c(a(c(A(x)))))
C(a(x)) → D(x)

The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
                                        ↳ QDP
                                          ↳ QDPOrderProof
                                            ↳ QDP
                                              ↳ DependencyGraphProof
QDP
                                                  ↳ Narrowing
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(x)) → D(b(x))
D(b(x)) → B1(c(a(x)))
B1(a(x)) → B1(x)
D(d(B(x))) → B1(c(a(c(A(x)))))

The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule D(b(x)) → B1(c(a(x))) at position [0] we obtained the following new rules:

D(b(x0)) → B1(d(d(d(x0))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
                                        ↳ QDP
                                          ↳ QDPOrderProof
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
QDP
                                                      ↳ Narrowing
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B1(a(x)) → D(b(x))
B1(a(x)) → B1(x)
D(d(B(x))) → B1(c(a(c(A(x)))))
D(b(x0)) → B1(d(d(d(x0))))

The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule D(d(B(x))) → B1(c(a(c(A(x))))) at position [0] we obtained the following new rules:

D(d(B(y0))) → B1(d(d(d(c(A(y0))))))



↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ RuleRemovalProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ Narrowing
                    ↳ QDP
                      ↳ QDPToSRSProof
                        ↳ QTRS
                          ↳ QTRS Reverse
                            ↳ QTRS
                              ↳ QTRS Reverse
                              ↳ QTRS Reverse
                              ↳ DependencyPairsProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
                                        ↳ QDP
                                          ↳ QDPOrderProof
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ Narrowing
QDP
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

D(d(B(y0))) → B1(d(d(d(c(A(y0))))))
B1(a(x)) → D(b(x))
B1(a(x)) → B1(x)
D(b(x0)) → B1(d(d(d(x0))))

The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)
d(d(B(x))) → b(c(a(c(A(x)))))
b(A(x)) → d(B(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

a(b(x1)) → b(d(x1))
a(c(x1)) → d(d(d(x1)))
b(d(x1)) → a(c(b(x1)))
c(f(x1)) → d(d(c(x1)))
d(d(x1)) → f(x1)
f(f(x1)) → a(x1)

The set Q is empty.
We have obtained the following QTRS:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)

The set Q is empty.

↳ QTRS
  ↳ QTRS Reverse
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(x)) → d(b(x))
c(a(x)) → d(d(d(x)))
d(b(x)) → b(c(a(x)))
f(c(x)) → c(d(d(x)))
d(d(x)) → f(x)
f(f(x)) → a(x)

Q is empty.