a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
A(x1) → B(b(x1))
A(x1) → B(b(b(x1)))
A(c(x1)) → B(x1)
A(x1) → B(x1)
B(c(b(x1))) → A(c(x1))
a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
↳ QTRS Reverse
A(x1) → B(b(x1))
A(x1) → B(b(b(x1)))
A(c(x1)) → B(x1)
A(x1) → B(x1)
B(c(b(x1))) → A(c(x1))
a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
A(c(x1)) → B(x1)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(c(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
A(x1) → B(b(x1))
A(x1) → B(b(b(x1)))
A(x1) → B(x1)
B(c(b(x1))) → A(c(x1))
a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(x1) → B(b(x1))
A(x1) → B(x1)
Used ordering: Polynomial interpretation [25,35]:
A(x1) → B(b(b(x1)))
B(c(b(x1))) → A(c(x1))
The value of delta used in the strict ordering is 1.
POL(c(x1)) = (2)x_1
POL(B(x1)) = x_1
POL(a(x1)) = 3 + x_1
POL(A(x1)) = 2 + x_1
POL(b(x1)) = 1 + x_1
a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
A(x1) → B(b(b(x1)))
B(c(b(x1))) → A(c(x1))
a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(c(b(x1))) → A(c(x1))
Used ordering: Polynomial interpretation [25,35]:
A(x1) → B(b(b(x1)))
The value of delta used in the strict ordering is 4.
POL(c(x1)) = 2 + (4)x_1
POL(B(x1)) = (2)x_1
POL(a(x1)) = 4 + x_1
POL(A(x1)) = 4 + (2)x_1
POL(b(x1)) = 1 + x_1
a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
A(x1) → B(b(b(x1)))
a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
c(a(x)) → b(c(x))
a(x) → b(b(b(x)))
b(c(b(x))) → c(a(x))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
c(a(x)) → b(c(x))
a(x) → b(b(b(x)))
b(c(b(x))) → c(a(x))
a(c(x1)) → c(b(x1))
a(x1) → b(b(b(x1)))
b(c(b(x1))) → a(c(x1))
c(a(x)) → b(c(x))
a(x) → b(b(b(x)))
b(c(b(x))) → c(a(x))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
c(a(x)) → b(c(x))
a(x) → b(b(b(x)))
b(c(b(x))) → c(a(x))