a(a(x1)) → b(x1)
b(a(x1)) → a(b(x1))
b(b(c(x1))) → c(a(x1))
b(b(x1)) → a(a(a(x1)))
c(a(x1)) → b(a(c(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
a(a(x1)) → b(x1)
b(a(x1)) → a(b(x1))
b(b(c(x1))) → c(a(x1))
b(b(x1)) → a(a(a(x1)))
c(a(x1)) → b(a(c(x1)))
B(b(x1)) → A(a(a(x1)))
B(a(x1)) → A(b(x1))
C(a(x1)) → C(x1)
C(a(x1)) → B(a(c(x1)))
B(b(x1)) → A(x1)
B(b(c(x1))) → C(a(x1))
B(b(c(x1))) → A(x1)
B(b(x1)) → A(a(x1))
B(a(x1)) → B(x1)
C(a(x1)) → A(c(x1))
A(a(x1)) → B(x1)
a(a(x1)) → b(x1)
b(a(x1)) → a(b(x1))
b(b(c(x1))) → c(a(x1))
b(b(x1)) → a(a(a(x1)))
c(a(x1)) → b(a(c(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QTRS Reverse
↳ QTRS Reverse
B(b(x1)) → A(a(a(x1)))
B(a(x1)) → A(b(x1))
C(a(x1)) → C(x1)
C(a(x1)) → B(a(c(x1)))
B(b(x1)) → A(x1)
B(b(c(x1))) → C(a(x1))
B(b(c(x1))) → A(x1)
B(b(x1)) → A(a(x1))
B(a(x1)) → B(x1)
C(a(x1)) → A(c(x1))
A(a(x1)) → B(x1)
a(a(x1)) → b(x1)
b(a(x1)) → a(b(x1))
b(b(c(x1))) → c(a(x1))
b(b(x1)) → a(a(a(x1)))
c(a(x1)) → b(a(c(x1)))
B(b(c(x1))) → A(x1)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(C(x1)) = 2 + 2·x1
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(c(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
B(b(x1)) → A(a(a(x1)))
B(a(x1)) → A(b(x1))
C(a(x1)) → B(a(c(x1)))
C(a(x1)) → C(x1)
B(b(x1)) → A(x1)
B(b(c(x1))) → C(a(x1))
B(b(x1)) → A(a(x1))
B(a(x1)) → B(x1)
C(a(x1)) → A(c(x1))
A(a(x1)) → B(x1)
a(a(x1)) → b(x1)
b(a(x1)) → a(b(x1))
b(b(c(x1))) → c(a(x1))
b(b(x1)) → a(a(a(x1)))
c(a(x1)) → b(a(c(x1)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(b(x1)) → A(a(a(x1)))
C(a(x1)) → B(a(c(x1)))
C(a(x1)) → C(x1)
B(b(x1)) → A(x1)
B(b(c(x1))) → C(a(x1))
B(b(x1)) → A(a(x1))
B(a(x1)) → B(x1)
C(a(x1)) → A(c(x1))
Used ordering: Polynomial interpretation [25]:
B(a(x1)) → A(b(x1))
A(a(x1)) → B(x1)
POL(A(x1)) = 2 + 2·x1
POL(B(x1)) = 10 + 2·x1
POL(C(x1)) = 7 + 6·x1
POL(a(x1)) = 4 + x1
POL(b(x1)) = 8 + x1
POL(c(x1)) = 3 + 3·x1
b(a(x1)) → a(b(x1))
b(b(x1)) → a(a(a(x1)))
b(b(c(x1))) → c(a(x1))
c(a(x1)) → b(a(c(x1)))
a(a(x1)) → b(x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
B(a(x1)) → A(b(x1))
A(a(x1)) → B(x1)
a(a(x1)) → b(x1)
b(a(x1)) → a(b(x1))
b(b(c(x1))) → c(a(x1))
b(b(x1)) → a(a(a(x1)))
c(a(x1)) → b(a(c(x1)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
B(a(x1)) → A(b(x1))
A(a(x1)) → B(x1)
POL(A(x1)) = 4·x1
POL(B(x1)) = 7 + 4·x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 3 + x1
POL(c(x1)) = 3·x1
b(a(x1)) → a(b(x1))
b(b(x1)) → a(a(a(x1)))
b(b(c(x1))) → c(a(x1))
c(a(x1)) → b(a(c(x1)))
a(a(x1)) → b(x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QTRS Reverse
↳ QTRS Reverse
a(a(x1)) → b(x1)
b(a(x1)) → a(b(x1))
b(b(c(x1))) → c(a(x1))
b(b(x1)) → a(a(a(x1)))
c(a(x1)) → b(a(c(x1)))
a(a(x1)) → b(x1)
b(a(x1)) → a(b(x1))
b(b(c(x1))) → c(a(x1))
b(b(x1)) → a(a(a(x1)))
c(a(x1)) → b(a(c(x1)))
a(a(x)) → b(x)
a(b(x)) → b(a(x))
c(b(b(x))) → a(c(x))
b(b(x)) → a(a(a(x)))
a(c(x)) → c(a(b(x)))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
a(a(x)) → b(x)
a(b(x)) → b(a(x))
c(b(b(x))) → a(c(x))
b(b(x)) → a(a(a(x)))
a(c(x)) → c(a(b(x)))
a(a(x1)) → b(x1)
b(a(x1)) → a(b(x1))
b(b(c(x1))) → c(a(x1))
b(b(x1)) → a(a(a(x1)))
c(a(x1)) → b(a(c(x1)))
a(a(x)) → b(x)
a(b(x)) → b(a(x))
c(b(b(x))) → a(c(x))
b(b(x)) → a(a(a(x)))
a(c(x)) → c(a(b(x)))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
a(a(x)) → b(x)
a(b(x)) → b(a(x))
c(b(b(x))) → a(c(x))
b(b(x)) → a(a(a(x)))
a(c(x)) → c(a(b(x)))